Skip to main content
Log in

Experimental study of electric furnace ferronickel slag as a supplementary cementitious material in massive high-strength concrete

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to investigate the feasibility of using electric furnace ferronickel slag (EFFS) as a supplementary cementitious material (SCM) in massive high-strength concrete (MHC). The workability, hydration heat, and pore structure of fresh and hardened paste are characterized using a rotor rheometer, an isothermal calorimeter, thermogravimetric analysis, and mercury intrusion porosimetry. The adiabatic temperature rise, autogenous shrinkage, mechanical properties, and chloride permeability of the concrete are investigated to examine the effect of EFFS. The results show that the utilization of EFFS as an SCM can improve the workability and reduce the hydration heat. The pore structure can be refined with the decrease in the w/b ratio. The addition of EFFS can reduce the adiabatic temperature rise and long-term autogenous shrinkage of concrete. Moreover, the incorporation of EFFS in concrete can improve the long-term strength and durability properties. These results support the advantages of EFFS, which can endow MHC with sufficient properties to resist thermal cracking and autogenous shrinkage cracking. The utilization of EFFS as an SCM will be a good step toward sustainable infrastructure development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Wang Q, Huang Z, Wang D. Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete. J Therm Anal Calorim. 2018;131:873–85.

    Article  CAS  Google Scholar 

  2. Maria K. Early age properties of high-strength/high-performance concrete. Cem Concr Compos. 2002;24:253–61.

    Article  Google Scholar 

  3. Zreiki J, Bouchelaghem F, Chaouche M. Early-age behaviour of concrete in massive structures, experimentation and modelling. Nucl Eng and Des. 2010;240:2643–54.

    Article  CAS  Google Scholar 

  4. Zhang J, Hou D, Han Y. Micromechanical modeling on autogenous and drying shrinkages of concrete. Constr Build Mater. 2012;29:230–40.

    Article  Google Scholar 

  5. Xie T, Fang C, Mohamad Ali MS, et al. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study. Cem Concr Compos. 2018;91:156–73.

    Article  CAS  Google Scholar 

  6. Koo KM, Lee EB, Nam JS, et al. Analysis of hydration heat and autogenous shrinkage of high-strength mass concrete. Mag Concr Res. 2011;63:377–89.

    Article  Google Scholar 

  7. Soliman AM, Nehdi ML. Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age. Mater and Struct. 2011;44:879–99.

    Article  CAS  Google Scholar 

  8. Nili M, Salehi AM. Assessing the effectiveness of pozzolans in massive high-strength concrete. Constr Build Mater. 2010;24:2108–16.

    Article  Google Scholar 

  9. Simos N, Fallier M, Joos T, et al. Thermally induced cracking on the massive concrete structure of the NSLS II synchrotron and its engineering remediation. Eng Struct. 2020;212:110519.

    Article  Google Scholar 

  10. Wang Q, Yan P, Feng J. Design of high-volume fly ash concrete for a massive foundation slab. Mag Concr Res. 2013;65:71–81.

    Article  Google Scholar 

  11. Saha AK, Khan MNN, Sarker PK. Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review. Resour Conserv Recy. 2018;134:10–24.

    Article  Google Scholar 

  12. Choi YC, Choi S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Constr Build Mater. 2015;99:279–87.

    Article  Google Scholar 

  13. Komnitsas K, Zaharaki D, Perdikatsis V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J Hazard Mater. 2009;161:760–8.

    Article  CAS  PubMed  Google Scholar 

  14. Li B, Huo B, Cao R, et al. Sulfate resistance of steam cured ferronickel slag blended cement mortar. Cem Concr Compos. 2019;96:204–11.

    Article  CAS  Google Scholar 

  15. Komnitsas K, Zaharaki D, Perdikatsis V. Geopolymerisation of low calcium ferronickel slags. J Mater Sci. 2007;42:3073–82.

    Article  CAS  Google Scholar 

  16. Peng Z, Tang H, Augustine R, et al. From ferronickel slag to value-added refractory materials: a microwave sintering strategy. Resour Conserv Recy. 2019;149:521–31.

    Article  Google Scholar 

  17. Zhang Q, Ji T, Yang Z, et al. Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials. Constr Build Mater. 2020;235:117449.

    Article  CAS  Google Scholar 

  18. Saha AK, Sarker PK. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr Build Mater. 2016;123:135–42.

    Article  CAS  Google Scholar 

  19. Liu X, Li T, Tian W, et al. Study on the durability of concrete with FNS fine aggregate. J Hazard Mater. 2019;381:120936.

    Article  PubMed  Google Scholar 

  20. Wang Z, Ni W, Jia Y, et al. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J Non-Cryst Solids. 2010;356:1554–8.

    Article  CAS  Google Scholar 

  21. Wang D, Wang Q, Xue J. Reuse of hazardous electrolytic manganese residue: detailed leaching characterization and novel application as a cementitious material. Resour Conserv Recy. 2020;154:104645.

    Article  Google Scholar 

  22. Saha AK, Sarker PK. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. J Clean Prod. 2017;162:438–48.

    Article  CAS  Google Scholar 

  23. Wang D, Wang Q, Zhuang S, et al. Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: reaction mechanism, engineering properties and leaching behaviors. Constr Build Mater. 2018;188:860–73.

    Article  CAS  Google Scholar 

  24. Wu Q, Wu Y, Tong W, et al. Utilization of nickel slag as raw material in the production of Portland cement for road construction. Constr Build Mater. 2018;193:426–34.

    Article  CAS  Google Scholar 

  25. Sun J, Wang Z, Chen Z. Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. J Therm Anal Calorim. 2018;131:2291–301.

    Article  CAS  Google Scholar 

  26. Chen Y, Ji T, Yang Z, et al. Sustainable use of ferronickel slag in cementitious composites and the effect on chloride penetration resistance. Constr Build Mater. 2020;240:117969.

    Article  CAS  Google Scholar 

  27. Gu YC, Li JL, Peng JK, et al. Immobilization of hazardous ferronickel slag treated using ternary limestone calcined clay cement. Constr Build Mater. 2020;250:118837.

    Article  CAS  Google Scholar 

  28. Rahman MA, Sarker PK, Shaikh FUA, et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Constr Build Mater. 2017;140:194–202.

    Article  CAS  Google Scholar 

  29. Huang Y, Wang Q, Shi M. Characteristics and reactivity of ferronickel slag powder. Constr Build Mater. 2017;156:773–89.

    Article  CAS  Google Scholar 

  30. Kim H, Lee CH, Ann KY. Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Constr Build Mater. 2019;207:693–705.

    Article  CAS  Google Scholar 

  31. Saha AK, Sarker PK. Effect of sulphate exposure on mortar consisting of ferronickel slag aggregate and supplementary cementitious materials. J Build Eng. 2019;28:101012.

    Article  Google Scholar 

  32. Yang T, Yao X, Zhang Z. Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure. Constr Build Mater. 2014;59:188–94.

    Article  Google Scholar 

  33. Yang T, Wu Q, Zhu H, et al. Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag. Constr Build Mater. 2017;155:475–84.

    Article  CAS  Google Scholar 

  34. Zhang Z, Zhu Y, Yang T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod. 2017;141:463–71.

    Article  CAS  Google Scholar 

  35. Cao R, Li B, You N, et al. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Constr Build Mater. 2018;192:123–32.

    Article  CAS  Google Scholar 

  36. Mo L, Deng M, Tang M, Al-Tabbaa A. MgO expansive cement and concrete in China: past, present and future. Cem Concr Res. 2014;57:1–2.

    Article  CAS  Google Scholar 

  37. Yin WS, Li XP, Sun T, Wang JP, Chen YZ, Yan G. Experimental investigation on the mechanical and rheological properties of high-performance concrete (HPC) incorporating sinking bead. Constr Build Mater. 2020;243:118293.

    Article  Google Scholar 

  38. Luo T, Wang Q, Zhuang SY. Effect of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 2019;345:54–63.

    Article  CAS  Google Scholar 

  39. Wu LM, Farzadnia N, Shi CJ, Zhang ZH, Wang H. Autogenous shrinkage of high performance concrete: a review. Constr Build Mater. 2017;149:62–75.

    Article  CAS  Google Scholar 

  40. Zhao HT, Jiang KD, Yang R, Tang YM, Liu JP. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials. Int J Heat Mass Tran. 2020;146:118784.

    Article  Google Scholar 

  41. Yang T, Zhang ZH, Wang Q, Wu QS. ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Constr Build Mater. 2020;262:119990.

    Article  CAS  Google Scholar 

  42. Wang Q, Feng JJ, Yan PY. An explanation for the negative effect of elevated temperature at early ages on the late-age strength of concrete. J Mater Sci. 2011;46(22):7279–88.

    Article  CAS  Google Scholar 

  43. Wang D, Wang Q, Huang Z. New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Compos Part B Eng. 2020;198:108207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Shi, C. Experimental study of electric furnace ferronickel slag as a supplementary cementitious material in massive high-strength concrete. J Therm Anal Calorim 147, 4983–4993 (2022). https://doi.org/10.1007/s10973-021-10900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10900-5

Keywords

Navigation