Skip to main content
Log in

Study of the thermal degradation of flame-retardant polyester GFRP using TGA and TG-FTIR-GC/MS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal degradation behaviors of commercial flame-retardant unsaturated polyester glass fiber-reinforced plastic (polyester GFRP) containing aluminum trihydrate (ATH) were studied using thermogravimetric analysis and a combination of TG-Fourier transform infrared-gas chromatography/mass spectrometry (TG-FTIR-GC/MS). From the variation of derivative thermogravimetry curves, it is found that the degradation of polyester GFRP can be divided into two stages with the critical conversion rate of 0.35. Activation energies were calculated by Starink method, and then the kinetic triplet was further determined by Coats-Redfern method. The results show that the dehydration of ATH and breakage of ester linkages lead to the first major mass loss, and volatile products including H2O, dicyclopentadiene, benzaldehyde and dimethyl phthalate are generated. Consecutive reaction occurs in the second stage. The statistical rupture of polyester and polystyrene chains leads to the formation of toxic volatiles, especially styrene, α-methylstyrene, toluene, ethylbenzene, benzaldehyde, phenol and phthalic anhydride. Possible reaction mechanisms are discussed in order to explain the observed results. The experimental results could give guidance to the fire safety design of high-speed train and provide basic data for numerical simulation of fire accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fiberglass Market by Glass Type (E-Glass, ECR-Glass, H-Glass, S-Glass, AR-Glass), Resin Type, Product Type(Glass Wool, Direct & Assembled Roving, Yarn, Chopped Strand), Application(Composites, Insulation) and Region-Global Forecast to 2025. 2020. https://www.marketsandmarkets.com/Market-Reports/fiberglass-market-6124844.html. Accessed 13 Jan 2021.

  2. Xu L, Lee LJ. Effect of nanoclay on shrinkage control of low profile unsaturated polyester (UP) resin cured at room temperature. Polymer. 2004;45(21):7325–34.

    Article  CAS  Google Scholar 

  3. Ito M, Nagai K. Degradation issues of polymer materials used in railway field. Polym Degrad Stab. 2008;93(10):1723–35.

    Article  CAS  Google Scholar 

  4. Curry B. Comparison of flame, smoke and toxicity in a halogen-free and a halogenated reinforced composite. J Adv Mater. 2005;37(4):36–9.

    CAS  Google Scholar 

  5. Weil ED, Levchik SV. Commercial flame retardancy of unsaturated polyester and vinyl resins: review. J Fire Sci. 2004;22(4):293–303.

    Article  Google Scholar 

  6. Chiu HT, Chiu SH, Jeng RE, Chung JS. A study of the combustion and fire-retardance behaviour of unsaturated polyester/phenolic resin blends. Polym Degrad Stab. 2000;70(3):505–14.

    Article  Google Scholar 

  7. Mouritz AP, Gibson AG. Fire properties of polymer composite materials. Dordrecht: Springer; 2006.

    Google Scholar 

  8. Atkinson PA, Haines PJ, Skinner GA, Lever TJ. Studies of fire-retardant polyester thermosets using thermal methods. J Therm Anal Calorim. 2000;59(1):395–408.

    Article  CAS  Google Scholar 

  9. Liang J, Wang B, Zhu L, Wang H, Li C, Lu S. Pyrolysis characteristic study on seat cushion materials of China’s high-speed train. J Therm Anal Calorim. 2017;130(3):2331–9.

    Article  CAS  Google Scholar 

  10. Chen R, Lu S, Li C, Li M, Lo S. Characterization of thermal decomposition behavior of commercial flame-retardant ethylene–propylene–diene monomer (EPDM) rubber. J Therm Anal Calorim. 2015;122(1):449–61.

    Article  CAS  Google Scholar 

  11. Spasojevic PM. Chapter 15—thermal and rheological properties of unsaturated polyester resins-based composites. In: Thomas S, Hosur M, Chirayil CJ, editors. Unsaturated polyester resins. Dordrecht: Elsevier; 2019. p. 367–406.

    Chapter  Google Scholar 

  12. Kandare E, Kandola BK, Price D, Nazaré S, Horrocks RA. Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS. Polym Degrad Stab. 2008;93(11):1996–2006.

    Article  CAS  Google Scholar 

  13. Tibiletti L, Longuet C, Ferry L, Coutelen P, Mas A, Robin J, Lopez-Cuesta J. Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polym Degrad Stab. 2011;96(1):67–75.

    Article  CAS  Google Scholar 

  14. Ravey M. Pyrolysis of unsaturated polyester resin. Quantitative aspects. J Polym Sci Polym Chem Ed. 1983;21(1):1–15.

    Article  CAS  Google Scholar 

  15. Evans SJ, Haines PJ, Skinner GA. The effects of structure on the thermal degradation of polyester resins. Thermochim Acta. 1996;278:77–89.

    Article  CAS  Google Scholar 

  16. Bansal RK, Mittal J, Singh P. Thermal stability and degradation studies of polyester resins. J Appl Polym Sci. 1989;37(7):1901–8.

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang L, Yang Y, Cai X. Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR. J Therm Anal Calorim. 2016;125(2):839–48.

    Article  CAS  Google Scholar 

  18. Reuter J, Greiner L, Schönberger F, Döring M. Synergistic flame retardant interplay of phosphorus containing flame retardants with aluminum trihydrate depending on the specific surface area in unsaturated polyester resin. J Appl Polym Sci. 2019;136(13):47270.

    Article  CAS  Google Scholar 

  19. López FA, Martín MI, Alguacil FJ, Rincón JM, Centeno TA, Romero M. Thermolysis of fibreglass polyester composite and reutilisation of the glass fibre residue to obtain a glass–ceramic material. J Anal Appl Pyrolysis. 2012;93:104–12.

    Article  CAS  Google Scholar 

  20. Grause G, Mochizuki T, Kameda T, Yoshioka T. Recovery of glass fibers from glass fiber reinforced plastics by pyrolysis. J Mater Cycles Waste Manag. 2013;15(2):122–8.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  22. Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105(3):757–66.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  24. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1):163–76.

    Article  CAS  Google Scholar 

  25. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  26. Gillespie B, Long M, McMillan N, Walde C. Determining Limitations of Kinetic Models for Pyrolysis Simulation of Fiber Reinforced Polymer Composites: Worcester Polytechnic Institute; 2014.

  27. Janković B, Manić N, Stojiljković D, Jovanović V. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel. 2018;234:447–63.

    Article  CAS  Google Scholar 

  28. Chen R, Xu X, Lu S, Zhang Y, Lo S. Pyrolysis study of waste phenolic fibre-reinforced plastic by thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Convers Manage. 2018;165:555–66.

    Article  CAS  Google Scholar 

  29. Cao H, Duan Q, Chai H, Li X, Sun J. Experimental study of the effect of typical halides on pyrolysis of ammonium nitrate using model reconstruction. J Hazard Mater. 2020;384:121297.

    Article  CAS  PubMed  Google Scholar 

  30. Kim E, Lautenberger C, Dembsey N. Property estimation for pyrolysis modeling applied to polyester FRP composites with different glass contents. COMPOSITES & POLYCON 2009; 2009.

  31. Yu B, Till V, Thomas K. Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Compos Sci Technol. 2007;67(15–16):3098–109.

    Article  CAS  Google Scholar 

  32. Cao H, Jiang L, Duan Q, Zhang D, Chen H, Sun J. An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. J Hazard Mater. 2019;364:539–47.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Zhao Y, Zhang T, Ding Z, Li C, Lu S. Characterization of thermal decomposition and combustion for commercial flame-retardant rubber floor cloth in TG–FTIR and FPA. J Therm Anal Calorim. 2019;135(6):3453–61.

    Article  CAS  Google Scholar 

  34. Chrissafis K, Roumeli E, Paraskevopoulos KM, Nianias N, Bikiaris DN. Effect of different nanoparticles on thermal decomposition of poly(propylene sebacate)/nanocomposites: Evaluation of mechanisms using TGA and TG–FTIR–GC/MS. J Anal Appl Pyrolysis. 2012;96:92–9.

    Article  CAS  Google Scholar 

  35. Lin Y, Jiang S, Gui Z, Li G, Shi X, Chen G, Peng X. Synthesis of a novel highly effective flame retardant containing multivalent phosphorus and its application in unsaturated polyester resins. RSC Adv. 2016;6(89):86632–9.

    Article  CAS  Google Scholar 

  36. Wang D, Wen P, Wang J, Song L, Hu Y. The effect of defect-rich molybdenum disulfide nanosheets with phosphorus, nitrogen and silicon elements on mechanical, thermal, and fire behaviors of unsaturated polyester composites. Chem Eng J. 2017;313:238–49.

    Article  CAS  Google Scholar 

  37. Lin Y, Yu B, Jin X, Song L, Hu Y. Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Adv. 2016;6(55):49633–42.

    Article  CAS  Google Scholar 

  38. Carmen Matías M, Larena A, De La Ulagares OM, Urreaga JM. Application of FTIR spectroscopy to the study of curing of glass reinforced polyester composites. MACROMOL SYMP. 1995;94(1):273–82.

    Article  Google Scholar 

  39. Jang BN, Wilkie CA. The thermal degradation of polystyrene nanocomposite. Polymer. 2005;46(9):2933–42.

    Article  CAS  Google Scholar 

  40. Baudry A, Dufay J, Regnier N, Mortaigne B. Thermal degradation and fire behaviour of unsaturated polyester with chain ends modified by dicyclopentadiene. Polym Degrad Stab. 1998;61(3):441–52.

    Article  CAS  Google Scholar 

  41. Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab. 2006;91(2):255–61.

    Article  CAS  Google Scholar 

  42. Mouritz AP, Mathys Z, Gibson AG. Heat release of polymer composites in fire. Compos Part A-Appl S. 2006;37(7):1040–54.

    Article  CAS  Google Scholar 

  43. Agrawal JP, Sarwade DB, Makashir PS, Mahajan RR, Dendage PS. Thermal degradation studies of novel diethylene glycol based unsaturated polyesters in air. Polym Degrad Stab. 1998;62(1):9–14.

    Article  CAS  Google Scholar 

  44. Mortaigne B, Bourbigot S, Le Bras M, Cordellier G, Baudry A, Dufay J. Fire behaviour related to the thermal degradation of unsaturated polyesters. Polym Degrad Stab. 1999;64(3):443–8.

    Article  CAS  Google Scholar 

  45. Anderson DA, Freeman ES. The kinetics of the thermal degradation of the synthetic styrenated polyester, laminac 4116. J Appl Polym Sci. 1959;1(2):192–9.

    Article  CAS  Google Scholar 

  46. Gardner P, Lehrle R. Polystyrene pyrolysis mechanisms—I. As deduced from the dependence of product yields on film thickness. Eur Polym J. 1993;29(2):425–35.

    Article  CAS  Google Scholar 

  47. Hu Y, Li S. The effects of magnesium hydroxide on flash pyrolysis of polystyrene. J Anal Appl Pyrolysis. 2007;78(1):32–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Research and Development Program of China (Grant Number 2016YFB1200505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Ge, F., Li, C. et al. Study of the thermal degradation of flame-retardant polyester GFRP using TGA and TG-FTIR-GC/MS. J Therm Anal Calorim 147, 5743–5760 (2022). https://doi.org/10.1007/s10973-021-10895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10895-z

Keywords

Navigation