Skip to main content
Log in

Particle size effects on the crystallization kinetics of chalcogenide Se85Te10Sb5 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The particle size effects on the kinetic parameters of two overlapping crystallization peaks of Se85Te10Sb5 chalcogenide glass were studied using differential scanning calorimetry (DSC) under experimental and predicted isothermal conditions. The crystallization kinetics parameters of the two peaks were separated based on the application of a multi-peak Gaussian function using the advanced thermokinetics software package (AKTS). The nonisothermal methods of Friedman, Kissinger–Akahira–Sunose and the minimization, in addition to the predicted isothermal method, were used to investigate the variation of the effective activation energy with the extent of crystallization and, hence, with temperature. The local Avrami exponent as a function of the crystalline volume fraction was obtained at a constant heating rate or temperature for nonisothermal and isothermal processes. Its value was found to vary with particle size. The crystallization process of the two peaks was found to follow the Avrami–Erofeev reaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ganjoo A, Jain H, Yu C, Song R, Ryan JV, Irudayaraj J, Ding YJ, Pantano CG. Planar chalcogenide glass waveguides for IR evanescent wave sensors. J Non-Cryst Solids. 2006;352:584–8.

    CAS  Google Scholar 

  2. Harbold JM, Ilday FO, Wise FW, Aitken BG. Highly nonlinear Ge–As–Se and Ge–As–S–Se glasses for all-optical switching. IEEE Photon Technol Lett. 2002;14:822–4.

    Google Scholar 

  3. Joraid AA. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 2007;456:1–6.

    CAS  Google Scholar 

  4. Joraid AA, Abu-Sehly AA, Alamri SN. A study on isothermal kinetics of glassy Sb9.1Te20.1Se70.8 alloy. J Taibah Univ Sci. 2009;2:106–17.

    Google Scholar 

  5. Abdel-Rahim MA, Hammam Mohamed AS, Abu-Sehly AA, Hafiz MM. Composition effect on the pre-crystallization and crystallization characteristics for Se90-xTe10Agx. J Alloys Compd. 2017;728:1346–61.

    CAS  Google Scholar 

  6. Yin H, Li L, Liu Y, Hu L, Zeng H, Chen G. Impact of tellurium on glass transition and crystallization in the Ge-Se-Te-Bi system. Ceram Int. 2017;43:3556–61.

    CAS  Google Scholar 

  7. Abdel-Rahimn MA, Hafiz MM, Mahmoud AZ. Crystallization kinetics of over lapping phases in Se70Te15Sb15 using isoconversional methods. Prog Nat Sci Mater Int. 2015;25:169–77.

    Google Scholar 

  8. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  9. Vyazovkin S, Chrissafis KM, DiLorenzo L, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    CAS  Google Scholar 

  10. Farjas J, Roura P. Isoconversional analysis of solid-state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757–66.

    CAS  Google Scholar 

  11. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part II Complex transformations. J Therm Anal Calorim. 2011;105:767–73.

    CAS  Google Scholar 

  12. Farjas J, Roura P. Isoconversional analysis of solid-state transformations. A critical review. Part III. Isothermal and nonisothermal predictions. J Therm Anal Calorim. 2012;109:183–91.

    CAS  Google Scholar 

  13. Joraid AA, Abu El-Oyoun M, Afify N. Phase separation and crystallization kinetics studies of amorphous Si10Te90. Chalcogenide Lett. 2016;13:79–89.

    CAS  Google Scholar 

  14. Joraid AA, Okasha RM, Al-Maghrabi MA, Afifi TH, Agatemor C, Abd-El-Aziz AS. Thermal degradation behavior of a new family of organometallic dendrimer. J Inorg Organomet Polym Mater. 2020. https://doi.org/10.1007/s10904-020-01444-6.

    Article  Google Scholar 

  15. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Google Scholar 

  16. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  18. Akahira T, Sunose T. Method of determining activation deterioration constant of electric insulating materials. Res Rep Chiba Inst (Sci Technol). 1971;16:22–31.

    Google Scholar 

  19. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    CAS  Google Scholar 

  20. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    CAS  Google Scholar 

  21. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Springer Int Publ Switzerland. 2015. https://doi.org/10.1007/978-3-319-14175-6.

    Article  Google Scholar 

  22. Joraid AA, Abu-Sehly AA, Alamri SN. Isoconversional kinetic analysis of the crystallization phases of amorphous selenium thin films. Thin Solid Films. 2009;517:6137–41.

    CAS  Google Scholar 

  23. Ray CS, Day DE. Identifying internal and surface crystallization by differential thermal analysis for the glass-to-crystal transformations. Thermochim Acta. 1996;280(281):163–74.

    Google Scholar 

  24. Ray CS, Day DE, Huang W, Narayan KL, Kelton KF. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. J Non-Cryst Solids. 1996;204:1–12.

    CAS  Google Scholar 

  25. Bednarcik J, Burkel E, Saksl K, Kollar P, Roth S. Mechanically induced crystallization of an amorphous CoFeZrB alloy. J Appl Phys. 2006;100:014903.

    Google Scholar 

  26. Pustkova P, Zmrhalova Z, Málek J. The particle size influence on crystallization kinetics of (GeS2)01(Sb2S3)09 glass. Thermochim Acta. 2007;466:13–21.

    CAS  Google Scholar 

  27. Svoboda R, Malek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    CAS  Google Scholar 

  28. Joraid AA. Limitation of the Johnson-Mehl-Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim Acta. 2005;436:78–82.

    CAS  Google Scholar 

  29. Joraid AA. The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films. Phys B. 2007;390:263–9.

    CAS  Google Scholar 

  30. Sestak J, Simon P (Editors). Thermal analysis of micro, nano- and non-crystalline materials -transformation, crystallization, kinetics and thermodynamics. Springer, Heidelberg. DOI https://doi.org/10.1007/978-90-481-3150-1

  31. International Centre for Diffraction Data (ICDD). PDF-4+ 2018.

  32. Roduit B. Prediction of the progress of solid-state reactions under different temperature modes. Thermochim Acta. 2002;388:377–87.

    CAS  Google Scholar 

  33. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction. J Therm Anal Calorim. 2007;89:479–90.

    CAS  Google Scholar 

  34. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D, Moulard H, Dilhan D. The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim. 2008;93:143–52.

    CAS  Google Scholar 

  35. Roduit B, Dermaut W, Lunghi A, Folly P, Berger B, Sarbach A. Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J Therm Anal Calorim. 2008;93:163–73.

    CAS  Google Scholar 

  36. Joraid AA, Alhosuini IMA. Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochim Acta. 2014;595:28–34.

    CAS  Google Scholar 

  37. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: In search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.

    CAS  Google Scholar 

  38. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.

    CAS  Google Scholar 

  39. Majumdar S, Sharma IG, Bidaye AC, Suri AKA. study on isothermal kinetics of thermal decomposition of cobalt oxalate to cobalt. Thermochim Acta. 2008;473:45–9.

    CAS  Google Scholar 

  40. Blazquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53:2305–11.

    CAS  Google Scholar 

  41. Blazquez JS, Conde CF, Conde A, Kulik T. A direct extension of the Avrami equation to describe the non-isothermal crystallization of Al-base alloys. J Alloys Compd. 2007;434–435:187–9.

    Google Scholar 

  42. Ramasamy P, Stoica MA, Taghvaei H, Prashanth KG, Kumar R, Eckert J. Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses. J Appl Phys. 2016;119:073908.

    Google Scholar 

  43. Rahvard MM, Tamizifar M, Boutorabi SM. Non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 and Zr56Co22Cu6Al16 bulk metallic glasses. J Therm Anal Calorim. 2018;134:903–14.

    Google Scholar 

  44. Jiang SS, Zhu L, Zheng H, Wang YG. Kinetics of non-isothermal crystallization in FeNiPC(Nb) alloys. Thermochim Acta. 2020;684:178481.

    CAS  Google Scholar 

  45. Svoboda R, Malek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-Cryst Solids. 2012;358:276–84.

    CAS  Google Scholar 

  46. Svoboda R, Malek J. Crystallization kinetics of amorphous Se, Part 1. Interpretation of kinetic functions. J Therm Anal Calorim. 2013;114:473–82.

    CAS  Google Scholar 

  47. Svoboda R, Malek J. Crystallization kinetics of a-Se Part 2. Deconvolution of a complex process: the final answer. J Therm Anal Calorim. 2014;115:81–91.

    CAS  Google Scholar 

  48. Svoboda R, Malek J. Non-isothermal crystallization kinetics of As2Se3 glass studied by DSC. Thermochim Acta. 2014;579:56–63.

    CAS  Google Scholar 

  49. Svoboda R, Malek J. Particle size dependent isothermal crystallization kinetics in a Se-Te glassy system. Thermochim Acta. 2015;610:47–56.

    CAS  Google Scholar 

  50. Svoboda R, Malek J. Thermal behavior of Se-rich Ge2Sb2Se(5-y)Tey chalcogenide system. J Alloys Compd. 2015;627:287–98.

    CAS  Google Scholar 

  51. Svoboda R, Malek J. How nucleation-growth kinetics is influenced by initial degree of material crystallinity. Thermochim Acta. 2016;631:28–35.

    CAS  Google Scholar 

  52. Svoboda R, Malek J. Thermal behavior of Se-rich GeSb2Se(4-y)Tey (glassy) system. J Alloys Compd. 2016;670:222–8.

    CAS  Google Scholar 

  53. Brandova D, Svoboda R, Malek J. Influence of particle size on crystallization and relaxation behavior of Ge20Se4Te76 glass for infrared optics. J Non-Cryst Solids. 2016;433:75–81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Joraid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joraid, A.A., Al-Marweny, A.A. & Al‑Maghrabi, M.A. Particle size effects on the crystallization kinetics of chalcogenide Se85Te10Sb5 glass. J Therm Anal Calorim 147, 3633–3645 (2022). https://doi.org/10.1007/s10973-021-10790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10790-7

Keywords

Navigation