Skip to main content

Advertisement

Log in

Evaluation of spironolactone compatibility with magnesium stearate and other lubricants in paediatric formulation using thermal and nonthermal techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Spironolactone is a potassium-sparing diuretic used as treatment for several diseases such as bronchopulmonary dysplasia, precocious puberty, hypertension or primary aldosteronism in child population. Because of the lack of paediatric formulations in the market, two types of solid oral formulation containing 2.5 and 10 mg of spironolactone were developed. During stability studies, excessive degradation was observed. As presented in this work, the degradation of spironolactone was linked to a drug excipient interaction between spironolactone and magnesium stearate via alkaline hydrolysis degradation pathway. In order to help the re-formulation with another lubricant, a complete drug excipient compatibility study was performed using thermal analysis techniques associated with chromatographic quantification of the drug after an isothermal stress testing. Spironolactone presents physicochemical incompatibilities with sodium benzoate, sodium stearyl fumarate, PEG 8000, PEG 20,000 and stearic acid. But no degradation was observed with PEG 20,000 and stearic acid indicating chemical compatibility. In total, talc, stearic acid and PEG 20,000 could be used for re-formulation of spironolactone paediatric drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Segar JL. Neonatal diuretic therapy: furosemide, thiazides, and spironolactone. Clin Perinatol. 2012;39(1):209–20. https://doi.org/10.1016/j.clp.2011.12.007.

    Article  PubMed  Google Scholar 

  2. Tavakkoli F. Review of the role of spironolactone in the therapy of children. https://www.who.int/selection_medicines/committees/expert/18/applications/paediatric/16_Spironolactone.pdf2011. Accessed 19 May 2020.

  3. Stella VJ. Foreword. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors. Developing solid oral dosage forms. 2nd ed. Boston: Academic Press; 2017. p. xv–xvi.

    Chapter  Google Scholar 

  4. Narang AS, Desai D, Badawy S. Physicochemical interactions in solid dosage forms. Pharm Res. 2012;29(10):2635–8. https://doi.org/10.1007/s11095-012-0867-5.

    Article  CAS  PubMed  Google Scholar 

  5. Darji MA, Lalge RM, Marathe SP, Mulay TD, Fatima T, Alshammari A, et al. Excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech. 2018;19(1):12–26. https://doi.org/10.1208/s12249-017-0864-4.

    Article  CAS  PubMed  Google Scholar 

  6. Gaisford S, Saunders M. Essentials of pharmaceutical preformulation. Hoboken: Wiley; 2012.

    Book  Google Scholar 

  7. ICH Q3B(R2). Impurities in new drug products. In: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2003.

  8. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, et al. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur J Pharm Biopharm. 2009;73(3):404–13. https://doi.org/10.1016/j.ejpb.2009.06.012.

    Article  CAS  PubMed  Google Scholar 

  9. da Silveira LM, Fiorot AB, Xavier TP, Yoshida MI, de Oliveira MA. Drug-excipient compatibility assessment of solid formulations containing meloxicam. Eur J Pharm Sci. 2018;112:146–51. https://doi.org/10.1016/j.ejps.2017.11.015.

    Article  CAS  PubMed  Google Scholar 

  10. Niguram P, Polaka SN, Rathod R, Kalia K, Kate AS. Update on compatibility assessment of empagliflozin with the selected pharmaceutical excipients employed in solid dosage forms by thermal, spectroscopic and chromatographic techniques. Drug Dev Ind Pharm. 2020;46(2):209–18. https://doi.org/10.1080/03639045.2020.1716371.

    Article  CAS  PubMed  Google Scholar 

  11. Moraes ANF, Silva LAD, de Oliveira MA, de Oliveira EM, Nascimento TL, Lima EM, et al. Compatibility study of hydroxychloroquine sulfate with pharmaceutical excipients using thermal and nonthermal techniques for the development of hard capsules. J Therm Anal Calorim. 2019;140(5):2283–92. https://doi.org/10.1007/s10973-019-08953-8.

    Article  CAS  Google Scholar 

  12. Ceschel GC, Badiello R, Ronchi C, Maffei P. Degradation of components in drug formulations: a comparison between HPLC and DSC methods. J Pharm Biomed Anal. 2003;32(4–5):1067–72. https://doi.org/10.1016/s0731-7085(03)00210-3.

    Article  CAS  PubMed  Google Scholar 

  13. Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7. https://doi.org/10.1016/j.jpba.2011.05.017.

    Article  CAS  PubMed  Google Scholar 

  14. Ledeti I, Romanescu M, Circioban D, Ledeti A, Vlase G, Vlase T, et al. Stability and compatibility studies of levothyroxine sodium in solid binary systems-instrumental screening. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12010058.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ali F, Kumar R, Sahu PL, Singh GN. Physicochemical characterization and compatibility study of roflumilast with various pharmaceutical excipients. J Therm Anal Calorim. 2017;130(3):1627–41. https://doi.org/10.1007/s10973-017-6274-8.

    Article  CAS  Google Scholar 

  16. Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97. https://doi.org/10.1016/j.jpba.2013.06.016.

    Article  CAS  PubMed  Google Scholar 

  17. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29(10):2639–59. https://doi.org/10.1007/s11095-012-0767-8.

    Article  CAS  PubMed  Google Scholar 

  18. Sadee W, Abshagen U, Finn C, Rietbrock N. Conversion of spironolactone to canrenone and disposition kinetics of spironolactone and canrenoate-potassium in rats. Naunyn Schmiedebergs Arch Pharmacol. 1974;283(3):303–18. https://doi.org/10.1007/bf00499190.

    Article  CAS  PubMed  Google Scholar 

  19. Bharate SS, Bharate SB, Bajaj AN. Incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;3:3–26.

    Google Scholar 

  20. Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2(1):21–43. https://doi.org/10.3390/lubricants2010021.

    Article  CAS  Google Scholar 

  21. Pramar Y, Gupta VD. Preformulation studies of spironolactone: effect of pH, two buffer species, ionic strength, and temperature on stability. J Pharm Sci. 1991;80(6):551–3. https://doi.org/10.1002/jps.2600800611.

    Article  CAS  PubMed  Google Scholar 

  22. Agafonov V, Legendre B, Rodier N, Wouessidjewe D, Cense JM. Polymorphism of spironolactone. J Pharm Sci. 1991;80(2):181–5. https://doi.org/10.1002/jps.2600800221.

    Article  CAS  PubMed  Google Scholar 

  23. Berbenni V, Marini A, Bruni G, Maggioni A, Riccardi R, Orlandi A. Physico-chemical characterisation of different solid forms of spironolactone. Thermochim Acta. 1999;340–341:117–29. https://doi.org/10.1016/s0040-6031(99)00258-0.

    Article  Google Scholar 

  24. Waterman KC, Adami RC. Accelerated aging: prediction of chemical stability of pharmaceuticals. Int J Pharm. 2005;293(1–2):101–25. https://doi.org/10.1016/j.ijpharm.2004.12.013.

    Article  CAS  PubMed  Google Scholar 

  25. Waterman KC, Adami RC, Alsante KM, Antipas AS, Arenson DR, Carrier R, et al. Hydrolysis in pharmaceutical formulations. Pharm Dev Technol. 2002;7(2):113–46. https://doi.org/10.1081/pdt-120003494.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alexandra Gautier and Estelle Surget for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Legrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legrand, P., Rosa, F., Boccadifuoco, G. et al. Evaluation of spironolactone compatibility with magnesium stearate and other lubricants in paediatric formulation using thermal and nonthermal techniques. J Therm Anal Calorim 147, 3151–3159 (2022). https://doi.org/10.1007/s10973-021-10741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10741-2

Keywords

Navigation