Skip to main content
Log in

Estimating ignition time of solid exposed to increasing-steady thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This contribution presents an alternative methodology to predict ignition of solid under increasing-steady heat flux, which may be irradiated from the smoke layer with time-dependent temperature. An approximate analytical solution, using ignition temperature criterion, is proposed and two typical heating conditions, linear- and t2-steady heat fluxes, are emphasized. The critical increasing rate of heat flux and the critical transition time, guaranteeing non-ignition in the first stage, are quantitatively assessed. Two explicit ignition time correlations are derived for low and high heat fluxes in the second stage, and the thresholds separating the application regimes of the two correlations are also provided. PMMA (polymethyl methacrylate) and a previously developed numerical model are employed to validate the reliability of the analytical model and the accuracies of the approximations used. The results show that under the designed four sets of increasing-steady heat fluxes, the analytically predicted surface temperatures and ignition times match the simulation results well. Using the calculated ignition time, the linear dependency of ignition time on the squared critical energy is also found valid in current study. Meanwhile, the effect of critical temperature on ignition time predictions is quantitatively examined by parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Constant in ignition time correlation

a :

Constant in heat flux (HF) expression (W m−2 s−b)

B :

Constant in ignition time correlation

b :

Constant in HF expression

C :

Constant in ignition time correlation

C P :

Heat capacity of solid (J g1 K1)

\(C_{{\text{g}}}\) :

Heat capacity of gas (J g1 K1)

e :

Euler number

\(\Delta H_{{\text{v}}}\) :

Heat of decomposition (J g1)

h c :

Convection heat transfer coefficient/W m−2 K−1

k :

Thermal conductivity/W m1 K1

L :

Thickness of computation volume (m)

\(\dot{m}^{\prime\prime}\) :

Mass flux (g m2 s1)

\(\dot{q}^{\prime\prime}\) :

Transient HF (W m2)

\(\dot{q}_{{\text{c}}}^{{\prime \prime }}\) :

Constant HF (W m2)

\(R\) :

Ideal gas constant (J mol−1 K−1)

\(S_{{\text{v}}}\) :

Pyrolysis rate (s−1)

t :

Time (s)

T :

Temperature (K)

x :

Spatial coordinate (m)

\(Z\) :

Pre-exponential factor (s−1

\(\alpha\) :

Thermal diffusivity (m2 s1)

\(\varepsilon\) :

Emissivity

\(\theta\) :

Relative temperature (K)

\(\xi\) :

Non-dimensional spatial parameter

\(\rho\) :

Density (gm3)

\(\sigma\) :

Stefan–Boltzmann constant (W m2 K4)

\(\tau\) :

Relative time/s

\(\varphi\) :

Non-dimensional time

1:

Linear-steady HF

2:

t2-steady HF

cri:

Critical value

ig:

Ignition

t:

Transition time

thr:

Threshold value

0:

Initial and ambient conditions

References

  1. Walton WD, Thomas PH, Ohmiya Y. Estimating temperatures in compartment fires. In: Hurley MJ, editor. SFPE handbook of fire protection engineering. New York: Springer; 2016. p. 996–1023.

    Google Scholar 

  2. Babrauskas V, Peacock RD, Reneke PA. Defining flashover for fire hazard calculations Part II. Fire Safety J. 2003;38:613–22.

    CAS  Google Scholar 

  3. Gong J, Wang D, Shi L, Liu X, Chen Y, Zhang G. Experimental study on the smoke temperature evolution in a polyethylene (PE)-lined compartment on fire. J Therm Anal Calorim. 2020;140:1907–17.

    CAS  Google Scholar 

  4. Chen CJ, Hsieh WD, Hu WC, Lai CM, Lin TH. Experimental investigation and numerical simulation of a furnished office fire. Build Environ. 2010;45:2735–42.

    Google Scholar 

  5. Byström A, Cheng X, Wickström U, Veljkovic M. Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Build Environ. 2012;51:255–62.

    Google Scholar 

  6. Mccaffrey BJ, Quintiere JG, Harkleroad MF. Estimating room temperatures and the likelihood of flashover using fire test data correlations. Fire Technol. 1981;17:98–119.

    CAS  Google Scholar 

  7. Babrauskas V. COMPF2: A program for calculating post-flashover fire temperatures. NBS Technical Note 991, National Bureau of Standards, (1979).

  8. Jones WW, Peacock RD, Forney GP, Reneke PA. CFAST-consolidated model of fire growth and smoke transport (version 6) technical reference guide. NIST Special Publication 1026, National Institute of Standards and Technology, (2009).

  9. Barnett CR. BFD curve: a new empirical model for fire compartment temperatures. Fire Safety J. 2002;37:437–63.

    Google Scholar 

  10. Barnett CR. Replacing international temperature-time curves with BFD curve. Fire Safety J. 2007;42:321–7.

    Google Scholar 

  11. Lawson DI, Simms DL. The ignition of wood by radiation. Br J Appl Phys. 1952;3:288–92.

    Google Scholar 

  12. Wang Y, Yang L, Zhou X, Dai J, Zhou Y, Deng Z. Experiment study of the altitude effects on spontaneous ignition characteristics of wood. Fuel. 2010;89:1029–34.

    CAS  Google Scholar 

  13. Antonov DV, Valiullin TR, Iegorov RI, Strizhak PA. Effect of macroscopic porosity onto the ignition of the waste-derived fuel droplets. Energy. 2017;119:1152–8.

    CAS  Google Scholar 

  14. Li J, Gong J, Stoliarov SI. Development of pyrolysis models for charring polymers. Polym Degrad Stabil. 2015;115:138–52.

    CAS  Google Scholar 

  15. Peng F, Zhou XD, Zhao K, Wu ZB, Yang LZ. Experimental and numerical study on effect of sample orientation on auto-ignition and piloted ignition of Poly(methyl methacrylate). Materials. 2015;8:4004–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Delichatsios M. Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Safety Sci. 2000;6:233–44.

    Google Scholar 

  17. Lamorlette A, Candelier F. Thermal behavior of solid particles at ignition: Theoretical limit between thermally thick and thin solids. Int J Heat Mass Tran. 2015;82:117–22.

    Google Scholar 

  18. Dai J, Delichatsios MA, Yang L. Piloted ignition of solid fuels at low ambient pressure and varying igniter location. P Combust Inst. 2013;34:2497–503.

    CAS  Google Scholar 

  19. Spearpoint MJ, Quintiere JG. Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux. Fire Safety J. 2001;36:391–415.

    Google Scholar 

  20. McAllister S. Critical mass flux for flaming ignition of wet wood. Fire Safety J. 2013;61:200–6.

    CAS  Google Scholar 

  21. Mcallister S, Fernandez-Pello C, Urban D. The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible. Combust Flame. 2010;157:1753–9.

    CAS  Google Scholar 

  22. Fereres S, Lautenberger C, Fernandez-Pello C. Mass flux at ignition in reduced pressure environments. Combust Flame. 2011;158:1301–6.

    CAS  Google Scholar 

  23. Nils R, Guillermo R. Convective ignition of polymers: New apparatus and application to a thermoplastic polymer. P Combust Inst. 2019;37:4193–200.

    Google Scholar 

  24. McAllister S, Finney M. Convection ignition of live forest fuels. Fire Safety Sci. 2014;11:1312–25.

    Google Scholar 

  25. Roslon M, Olenick S, Zhou Y. Microgravity ignition delay of solid fuels in low-velocity flows. AIAA J. 2001;39:2336–42.

    CAS  Google Scholar 

  26. Boonmee N, Quintiere JG. Glowing and flaming autoignition of wood. P Combust Inst. 2002;29:289–96.

    Google Scholar 

  27. Jiang Y, Zhai C, Shi L, Liu X, Gong J. Assessment of melting and dripping effect on ignition of vertically discrete polypropylene and polyethylene slabs. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09575-1.

    Article  Google Scholar 

  28. Jiang F, De Ris JL, Khan MM. Absorption of thermal energy in PMMA by in-depth radiation. Fire Safety J. 2009;44:106–12.

    CAS  Google Scholar 

  29. Delichatsios MA, Zhang J. An alternative way for the ignition times for solids with radiation absorption in-depth by simple asymptotic solutions. Fire Mater. 2012;36:41–7.

    CAS  Google Scholar 

  30. Chen Y, Gong J, Wang X, Zhu S, Zhou Y, Jiang J, Wang Z. Effect of radiation absorption modes on ignition time of translucent polymers subjected to time-dependent heat flux. J Therm Anal Calorim. 2019;135:2183–95.

    CAS  Google Scholar 

  31. Bal N, Rein G. Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes. Combust Flame. 2011;158:1109–16.

    CAS  Google Scholar 

  32. Boulet P, Gérardin J, Acem Z, Parent G, Collin A, Pizzo Y, Porterie B. Optical and radiative properties of clear PMMA samples exposed to a radiant heat flux. Int J Therm Sci. 2014;82:1–8.

    CAS  Google Scholar 

  33. Zhou Y, Yang L, Dai J, Wang Y, Deng Z. Radiation attenuation characteristics of pyrolysis volatiles of solid fuels and their effect for radiant ignition model. Combust Flame. 2010;157:167–75.

    CAS  Google Scholar 

  34. Staggs J. The effects of gas-phase and in-depth radiation absorption on ignition and steady burning rate of PMMA. Combust Flame. 2014;161:3229–36.

    CAS  Google Scholar 

  35. Yang L, Guo Z, Zhou Y, Fan W. The influence of different external heating ways on pyrolysis and spontaneous ignition of some woods. J Anal Appl Pyrol. 2007;78:40–5.

    CAS  Google Scholar 

  36. Ji J, Cheng Y, Yang L, Guo Z, Fan W. An integral model for wood auto-ignition under variable heat flux. J Fire Sci. 2006;24:413–25.

    Google Scholar 

  37. Zhai C, Gong J, Zhou X, Peng F, Yang L. Pyrolysis and spontaneous ignition of wood under time-dependent heat flux. J Anal Appl Pyrol. 2017;125:100–8.

    CAS  Google Scholar 

  38. Vermesi I, Roenner N, Pironi P, Hadden RM, Rein G. Pyrolysis and ignition of a polymer by transient irradiation. Combust Flame. 2016;163:31–41.

    CAS  Google Scholar 

  39. Vermesi I, Didomizio MJ, Richter F, Weckman EJ, Rein G. Pyrolysis and spontaneous ignition of wood under transient irradiation: Experiments and a-priori predictions. Fire Safety J. 2017;91:218–25.

    CAS  Google Scholar 

  40. Didomizio MJ, Mulherin P, Weckman EJ. Ignition of wood under time-varying radiant exposures. Fire Safety J. 2016;82:131–44.

    CAS  Google Scholar 

  41. Lamorlette A. Analytical modeling of solid material ignition under a radiant heat flux coming from a spreading fire front. J Thermal Sci Eng Appl. 2014;6:044501.

    Google Scholar 

  42. Gong J, Zhai C, Yang L, Wang Z. Ignition of polymers under exponential heat flux considering both surface and in-depth absorptions. Int J Therm Sci. 2020;151:106242.

    CAS  Google Scholar 

  43. Fang J, Meng Y, Wang J, Zhao L, He X, Ji J, Zhang Y. Experimental, numerical and theoretical analyses of the ignition of thermally thick PMMA by periodic irradiation. Combust Flame. 2018;197:41–8.

    CAS  Google Scholar 

  44. Bilbao R, Mastral JF, Lana JA, Ceamanos J, Aldea ME, Betran M. A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux. J Anal Appl Pyrol. 2002;62:63–82.

    CAS  Google Scholar 

  45. Reszka P, Borowiec P, Steinhaus T, Torero JL. A methodology for the estimation of ignition delay times in forest fire modelling. Combust Flame. 2012;159:3652–7.

    CAS  Google Scholar 

  46. Chen Z. Design fires for motels and hotels. PhD thesis. Carleton University, Ottawa, Ontario, Canada, (2008).

  47. Zhang X, Hadjisophocleous G. An improved two-layer zone model applicable to both pre- and post-flashover fires. Fire Safety J. 2012;53:63–71.

    CAS  Google Scholar 

  48. Boulet P, Brissinger D, Collin A, Acem Z, Parent G. On the influence of the sample absorptivity when studying the thermal degradation of materials. Materials. 2015;8:5398–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsilingiris PT. Comparative evaluation of the infrared transmission of polymer films. Energ Convers Manage. 2003;44:2839–56.

    CAS  Google Scholar 

  50. Delichatsios MA, Chen Y. Asymptotic, approximate, and numerical solutions for the heatup and pyrolysis of materials including reradiation losses. Combust Flame. 1993;92:292–307.

    CAS  Google Scholar 

  51. Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Amen House; 1959.

    Google Scholar 

  52. Li J, Gong J, Stoliarov SI. Gasification experiments for pyrolysis model parameterization and validation. Int J Heat Mass Tran. 2014;77:738–44.

    CAS  Google Scholar 

  53. Dakka SM, Jackson GS, Torero JL. Mechanisms controlling the degradation of poly(methyl methacrylate) prior to piloted ignition. Proc Combust Inst. 2002;329:281–7.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51974164), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0367) and University Natural Science Research Project in Jiangsu Province (17KJA620003). The authors gratefully appreciate all these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Solution for \(\theta_{1}\) in Eq. (12):

Define Laplace transformation:

$$ L\left[ {\theta_{1} \left( {x,\tau } \right)} \right] = \Theta_{1} \left( {x,p} \right) $$
(60)

where \(p\) is the frequency parameter in Laplace transformation. Then, the heat transfer problem related with \(\theta_{1}\) can be expressed as:

$$ \left\{ \begin{gathered} p\Theta_{1} = \alpha \Theta_{{1{\text{xx}}}} \hfill \\ \left. { - k\Theta_{{1{\text{x}}}} } \right|_{{{\text{x}} = 0}} = \frac{{\dot{q}^{\prime\prime}_{{\text{c}}} }}{p} \hfill \\ \left. {\Theta_{{1{\text{x}}}} } \right|_{{{\text{x}} = \infty }} = 0 \hfill \\ \end{gathered} \right. \, $$
(61)

Solving this ordinary differential equation, \(\Theta_{1}\) can be derived as:

$$ \Theta_{1} = \frac{{\dot{q}^{\prime\prime}_{{\text{c}}} }}{k}\frac{{e^{ - {\text{qx}}} }}{pq} $$
(62)

where \(q = p/\alpha\). With inverse Laplace transformation, \(\theta_{1}\) can be obtained as [51]:

$$ \theta_{1} \left( {x,\tau } \right) = \, L^{ - 1} \left[ {\Theta_{1} \left( {x,p} \right)} \right] = L^{ - 1} \left[ {\frac{{\dot{q}^{\prime\prime}_{{\text{c}}} }}{k}\frac{{e^{ - {\text{qx}}} }}{pq}} \right] = \frac{{2\sqrt {\alpha \tau } \dot{q}^{\prime\prime}_{{\text{c}}} }}{k}\left[ {\frac{1}{\sqrt \pi }e^{{ - \frac{{x^{2} }}{4\alpha \tau }}} - \frac{x}{{2\sqrt {\alpha \tau } }}{\text{erfc}}\left( {\frac{x}{{2\sqrt {\alpha \tau } }}} \right)} \right] = \frac{{2\dot{q}^{\prime\prime}_{{\text{c}}} \sqrt \tau }}{{\sqrt {k\rho C_{{\text{P}}} } }}{\text{ierfc}}\left( {\frac{x}{{2\sqrt {\alpha \tau } }}} \right) $$
(63)

Appendix 2

Solution for \(\theta_{2}\) in Eq. (12):

The heat transfer problem related with \(\theta_{2}\) can be expressed as:

$$ \left\{ \begin{gathered} p\Theta_{2} - A_{1} e^{{ - B_{1} x}} = \alpha \Theta_{{2{\text{xx}}}} \hfill \\ \left. { - k\Theta_{{2{\text{x}}}} } \right|_{{{\text{x}} = 0}} = 0 \hfill \\ \left. {\Theta_{{2{\text{x}}}} } \right|_{{{\text{x}} = \infty }} = 0 \hfill \\ \end{gathered} \right. \, $$
(64)

Solving this ordinary differential equation, \(\Theta_{2}\) can be derived as:

$$ \Theta_{2} = \frac{{A_{1} }}{{p - \alpha B_{1}^{2} }}e^{{ - B_{1} {\text{x}}}} - \frac{{A_{1} B_{1} }}{{q\left( {p - \alpha B_{1}^{2} } \right)}}e^{ - {\text{qx}}} $$
(65)

With inverse Laplace transformation, \(\theta_{2}\) can be obtained as [51]:

$$ \begin{gathered} \theta_{2} \left( {x,\tau } \right) = L^{ - 1} \left[ {\Theta_{2} \left( {x,p} \right)} \right] = L^{ - 1} \left[ {\frac{{A_{1} }}{{p - \alpha B_{1}^{2} }}e^{{ - B_{1} x}} - \frac{{A_{1} B_{1} }}{{q\left( {p - \alpha B_{1}^{2} } \right)}}e^{ - {\text{qx}}} } \right] = L^{ - 1} \left[ {\frac{{A_{1} }}{{p - \alpha B_{1}^{2} }}e^{{ - B_{1} x}} } \right] - L^{ - 1} \left[ {\frac{{A_{1} B_{1} }}{{q\left( {p - \alpha B_{1}^{2} } \right)}}e^{ - {\text{qx}}} } \right] \hfill \\ = A_{1} e^{{ - B_{1} x + \alpha B_{1}^{2} \tau }} - \frac{{A_{1} }}{2}e^{{\alpha B_{1}^{2} \tau }} \left[ {e^{{ - B_{1} x}} {\text{erfc}}\left( {\frac{x}{{2\sqrt {\alpha \tau } }} - B_{1} \sqrt {\alpha \tau } } \right) - e^{{B_{1} x}} {\text{erfc}}\left( {\frac{x}{{2\sqrt {\alpha \tau } }} + B_{1} \sqrt {\alpha \tau } } \right)} \right] \hfill \\ \end{gathered} $$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Zhai, C. Estimating ignition time of solid exposed to increasing-steady thermal radiation. J Therm Anal Calorim 147, 3763–3778 (2022). https://doi.org/10.1007/s10973-021-10733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10733-2

Keywords

Navigation