Skip to main content
Log in

Evaluation of flammability, thermal stability and mechanical behavior of expandable graphite-reinforced acrylonitrile–butadiene–styrene terpolymer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Acrylonitrile-butadiene-styrene (ABS) terpolymer was loaded with expandable graphite (EG) at four different concentrations of 5%, 10%, 15% and 20% using micro-compounder followed by injection molding process. Mechanical, thermomechanical, thermal, flame retardancy, melt flow and morphological characterizations of composites were done by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), melt flow index (MFI) test and scanning electron microscopy (SEM), respectively. According to test results, tensile strength and storage modulus of ABS were improved with the increase in EG content. Storage modulus and glass transition temperature of ABS yielded enhancement with the inclusion of EG. However, percent elongation and impact strength values showed decreasing trend with EG additions. ABS/EG composites gave higher fire performance relative to ABS including enhancement in LOI and reduction in heat release rate. MFI test revealed that incorporation of EG with the lowest amount displayed no dramatic change for MFI value of neat ABS. EG flakes exhibited well-dispersion and exfoliated structure for all of the filling ratios as the SEM microimages of composites were examined. 15% and 20% EG containing ABS composites were remarked as the most suitable candidates among prepared composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal SL. Block polymers. New York: Springer; 1970.

    Google Scholar 

  2. McKetta JJ, Cunningham WA. Encyclopedia of chemical processing and design. New York: M. Dekker; 1992.

    Google Scholar 

  3. Moore JD. Acrylonitrile–butadiene–styrene (ABS)-a review. Composites. 1973;4:118–30.

    CAS  Google Scholar 

  4. Pritchard G. Plastics additives. Dordrecht: Springer; 1998.

    Google Scholar 

  5. Kline GM. Modern plastic encyclopedia. New York: McGraw Hill; 1986.

    Google Scholar 

  6. Rodríguez JF, Thomas JP, Renaud JE. Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials experimental investigation. Rapid Prototyp J. 2011;7(3):148–58.

    Google Scholar 

  7. Vicente CM, Martins TS, Leite M, Ribeiro A, Reis L. Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol. 2020;31(3):501–7.

    CAS  Google Scholar 

  8. Alhallak LM, Tirkes S, Tayfun U. Mechanical, thermal, melt-flow and morphological characterizations of bentonite-filled ABS copolymer. Rapid Prototyp J. 2020;26(7):1305–12.

    Google Scholar 

  9. Bucknall CB. Toughened plastics. London: Applied Science Publishers; 1997.

    Google Scholar 

  10. Tamashausky AV. Graphite—a multifunctional additive for paint and coatings. Paint Coat Ind. 2003;19:10–64.

    Google Scholar 

  11. Lysogorskiy Y, Esquinazi PD. Basic physics of functionalized graphite. Berlin: Springer International Publishing; 2016.

    Google Scholar 

  12. Rahaman M, Khastgir D, Aldalbahi AK. Carbon-containing polymer composites. Singapore: Springer; 2019.

    Google Scholar 

  13. Chen X, Yu J, Lu S, Wu H, Guo S, Luo Z. Combustion characteristics of polypropylene/ magnesium hydroxide/expandable graphite composites. J Macromol Sci B. 2009;48(6):1081–92.

    CAS  Google Scholar 

  14. Inuwa IM, Hassan A, Arjmandi R. Influence of exfoliated graphite nanoplatelets on properties of polyethylene terephthalate/polypropylene nanocomposites. Adv Polym Mater Technol. 2016;110:137–48.

    Google Scholar 

  15. Xiaolang C, Hong W, Zhu L. Synergistic effects of expandable graphite with magnesium hydroxide on the flame retardancy and thermal properties of polypropylene. Polym Eng Sci. 2007;47(11):1756–60.

    Google Scholar 

  16. Savas LA, Dogan M. The role of expandable graphite and organoclay on the flame retardant and mechanical properties of carbon fiber filled intumescent polypropylene composites. J Text Eng. 2018;25(109):22–9.

    Google Scholar 

  17. Semko L, Dzyubenko L, Kocherov V. Study of thermodestruction processes in polypropylene/exfoliated graphite composites. J Therm Anal Calorim. 2000;62(2):485–90.

    CAS  Google Scholar 

  18. Li K-Y, Kuan C-F, Kuan H-C, Chen CH, Liu TY, Chiang CL. Preparation, characterization, and flame retardance of high-density polyethylene/sulfur-free expandable graphite composites. High Perform Polym. 2014;26(7):798–809.

    Google Scholar 

  19. Liu J, Pang X, Shi X, Xu J. Expandable graphite in polyethylene: the effect of modification, particle size and the synergistic effect with ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties. Combust Sci Technol. 2020;192(4):575–91.

    CAS  Google Scholar 

  20. Kruger HJ, Focke WW, Mhike W, Taute A, Roberson A, Ofosu O. Cone calorimeter study of polyethylene flame retarded with expandable graphite and intumescent fire-retardant additives. J Fire Sci. 2014;32(6):498–517.

    CAS  Google Scholar 

  21. Wang H, Cao J, Luo F, Cao C, Qian Q, Huang B, Xiao L, Chen Q. Hugely enhanced flame retardancy and smoke suppression properties of UHMWPE composites with silicone-coated expandable graphite. Polym Adv Technol. 2019;30(7):1673–83.

    CAS  Google Scholar 

  22. Zhu HF, Zhu QL, Li J, Tao K, Xue L, Yan Q. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stabil. 2011;96:183–9.

    CAS  Google Scholar 

  23. Alam S, Mina MF, Rahman MJ, Gafur MA, Maria KH, Mieno T, Alam AM, Beg MD. Effects of micrometre-sized graphite flake to reinforce the performances of poly(lactic acid) thermoplastic biocomposites. Polym Polym Compos. 2019;27(1):20–32.

    CAS  Google Scholar 

  24. Sun Z, Ma Y, Xu Y, Chen X, Chen M, Yu J, Hu S, Zhang Z. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high-density polyethylene/ethylene vinyl-acetate/expandable graphite composites. Polym Eng Sci. 2014;54:1162–9.

    CAS  Google Scholar 

  25. Du L, Zhang Y, Yuan X, Chen J. Combustion characteristics and synergistic effect of halogen-free flame-retarded EVA/hydrotalcite blends with expandable graphite and fumed silica. Polym Plast Technol Eng. 2009;48(10):1002–7.

    CAS  Google Scholar 

  26. Wu TC, Tsai KC, Lu MC, Kuan HC, Chen CH, Kuan CF, Chiu SL, Hsu SW, Chiang CL. Synthesis, characterization, and properties of silane-functionalized expandable graphite composites. J Compos Mater. 2012;46(12):1483–96.

    CAS  Google Scholar 

  27. Ramanujam B, Radhakrishnan S, Deshpande S. Polyphenylene sulfide-expanded graphite nanocomposites: processing route dependent electrical percolation. J Thermoplast Compos Mater. 2017;30(12):1603–14.

    CAS  Google Scholar 

  28. Jin X, Chen C, Sun J, Zhang X, Gu X, Zhang S. The synergism between melamine and expandable graphite on improving the flame retardancy of polyamide 11. High Perform Polym. 2017;29(1):77–86.

    CAS  Google Scholar 

  29. Xu Y, Chen M, Ning X, Chen X, Sun Z, Ma Y, Yu J, Zhang Z, Bo X, Yang L, Chen Z. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. J Therm Anal Calorim. 2014;115(1):689–95.

    CAS  Google Scholar 

  30. Guler T, Tayfun U, Dogan M, Bayramli E. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Thermochim Acta. 2017;647:70–80.

    CAS  Google Scholar 

  31. Gharehbaghi A, Bashirzadeh R, Ahmadi Z. Polyurethane flexible foam fire resisting by melamine and expandable graphite: industrial approach. J Cell Plast. 2011;47(6):549–65.

    CAS  Google Scholar 

  32. Wang N, Xu G, Wu Y, Zhang J, Hu L, Luan H, Fang Q. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2016;123(2):1239–51.

    CAS  Google Scholar 

  33. Chen X, Song W, Liu J, Jiao C, Qian Y. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim. 2015;120(3):1819–26.

    CAS  Google Scholar 

  34. Pang X, Shi X, Kang X, Duan M, Weng M. Preparation of borate-modified expandable graphite and its flame retardancy on acrylonitrile-butadiene-styrene resin. Polym Compos. 2016;37:2673–83.

    CAS  Google Scholar 

  35. Zhang Y, Chen X, Fang Z. Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. J Appl Polym Sci. 2013;28(4):2424–32.

    Google Scholar 

  36. Hong Z-G, Chang S-Y. Fire performance and mechanical properties of acrylonitrile-butadiene-styrene copolymer modified expandable graphite composites. Fire Mater. 2012;36(4):277–87.

    CAS  Google Scholar 

  37. Ahmed SA, Tirkes S, Tayfun U. Reinforcing effect of polyurethane sizing on properties of acrylonitrile–butadiene–styrene composites involving short carbon fiber. SN Appl Sci. 2020;2:2024.

    CAS  Google Scholar 

  38. Fu S, Feng X, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng. 2008;39:933–61.

    Google Scholar 

  39. Ozkoc G, Bayram G, Bayramli E. Impact essential work of fracture toughness of ABS/polyamide-6 blends compatibilized with olefin based copolymers. J Mater Sci. 2008;43(8):2642–52.

    CAS  Google Scholar 

  40. He M, Zhang D, Guo J, Wu B. Dynamic mechanical properties, thermal, mechanical properties and morphology of long glass fiber-reinforced thermoplastic polyurethane/acrylonitrilebutadiene-styrene composites. J Thermoplast Compos Mater. 2016;29:425–39.

    CAS  Google Scholar 

  41. Jyoti J, Singh BP, Arya AK, Dhakate SR. Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv. 2016;6(5):3997–4006.

    CAS  Google Scholar 

  42. Pandey AK, Singh K, Kar KK. Thermo-mechanical properties of graphite-reinforced high-density polyethylene composites and its structure–property corelationship. J Compos Mater. 2017;51(12):1769–82.

    CAS  Google Scholar 

  43. Luna CB, Siqueira DD, Araújo EM, Wellen RM, Alves J, de Mélo T. Approaches on the acrylonitrile-butadiene-styrene functionalization through maleic anhydride and dicumyl peroxide. J Vinyl Addit Technol. 2020. https://doi.org/10.1002/vnl.21804.

    Article  Google Scholar 

  44. Oulmou F, Benhamida A, Dorigato A, Sola A, Messori M, Pegoretti A. Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide. J Elastom Plast. 2019;51(2):175–90.

    CAS  Google Scholar 

  45. Mngomezulu ME, Luyt AS, John MJ. Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. J Thermoplast Compos Mater. 2019;32(1):89–107.

    CAS  Google Scholar 

  46. Nigrawal A, Chand N. Investigations on dielectric, DSC and DMA behavior of graphite-filled polyester gradient composites. J Elastom Plast. 2013;45(4):351–65.

    CAS  Google Scholar 

  47. Polli H, Pontes L, Araujo A, Barros J, Fernandes V. Degradation behavior and kinetic study of ABS polymer. J Therm Anal Calorim. 2009;95(1):131–4.

    CAS  Google Scholar 

  48. Suzuki M, Wilkie CA. The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stabil. 1995;47(2):217–21.

    CAS  Google Scholar 

  49. Wang Z, Han E, Ke W. Thermal degradation of expandable graphite modified APP/PER/EN flame retardant coating. AcMMS. 2005;22(5):52–9.

    Google Scholar 

  50. Yang H, Wang X, Song L, Yu B, Yuan Y, Hu Y, Yuen RK. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams. Polym Adv Technol. 2014;25(9):1034–43.

    CAS  Google Scholar 

  51. Duquesne S, Le Bras M, Bourbigot S, Delobel R, Vezin H, Camino G, Eling B, Lindsay C, Roels T. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 2003;27(3):103–17.

    CAS  Google Scholar 

  52. Idumah CI, Hassan A, Bourbigot S. Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardancy and thermal properties of kenaf flour-PP nanocomposites. J Therm Anal Calorim. 2018;134(3):1681–703.

    CAS  Google Scholar 

  53. Troitzsch J. Plastic flammability handbook principles, regulations, testing, and approval. Munich: Hanser Verlag; 2004.

    Google Scholar 

  54. Mouritz AP, Gibson AG. Fire properties of polymer composite materials. Dordrecht: Springer; 2006.

    Google Scholar 

  55. Savas LA, Tayfun U, Hancer M, Dogan M. The flame-retardant effect of calcium hypophosphite in various thermoplastic polymers. Fire Mater. 2019;43(3):294–302.

    Google Scholar 

  56. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep. 2009;63(3):100–25.

    Google Scholar 

  57. Savas LA, Arslan C, Hacioglu F, Dogan M. Effect of reactive and nonreactive surface modifications and compatibilizer use on mechanical and flame-retardant properties of linear low-density polyethylene filled with huntite and hydromagnesite mineral. J Therm Anal Calorim. 2018;134(3):1657–66.

    CAS  Google Scholar 

  58. Horacek H, Pieh S. The importance of intumescent systems for fire protection of plastic materials. Polym Int. 2000;49(10):1106–14.

    CAS  Google Scholar 

  59. Dittrich B, Wartig KA, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil. 2013;98(8):1495–505.

    CAS  Google Scholar 

  60. Kanbur Y, Tayfun U. Development of multifunctional polyurethane elastomer composites containing fullerene: mechanical, damping, thermal, and flammability behaviors. J Elastom Plast. 2019;51(3):262–79.

    CAS  Google Scholar 

  61. Wei P, Bocchini S, Camino G. Flame retardant and thermal behavior of polylactide/expandable graphite composites. Polimery. 2013;58(5):361–4.

    CAS  Google Scholar 

  62. Chen X, Zhuo J, Song W, Jiao C, Qian Y, Li S. Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites. Polym Adv Technol. 2014;25(12):1530–7.

    CAS  Google Scholar 

  63. Bas AB, Yilmaz O, Ibis A, Dogu M, Kirkkopru K, Guner FS. Melt flow properties of graphite nanoplatelets-filled polypropylene. J Compos Mater. 2017;51(19):2793–804.

    CAS  Google Scholar 

  64. Akar AO, Hacaloglu J. Preparation and characterization of poly(lactic acid) composites involving aromatic diboronic acid and organically modified montmorillonite. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09236-y.

    Article  Google Scholar 

  65. Liang JZ. Melt rheology of nanometre-calcium-carbonate-filled acrylonitrile-butadiene–styrene (ABS) copolymer composites during capillary extrusion. Polym Int. 2002;51(12):1473–8.

    CAS  Google Scholar 

  66. As’habi L, Jafari SH, Khonakdar HA, Baghaei B. Morphological, rheological and thermal studies in melt processed compatibilized PA6/ABS/clay and thermal studies in melt processed compatibilized PA6/ABS/clay nanocomposites. J Polym Res. 2011;18:197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Tayfun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirmad, H., Tirkes, S. & Tayfun, U. Evaluation of flammability, thermal stability and mechanical behavior of expandable graphite-reinforced acrylonitrile–butadiene–styrene terpolymer. J Therm Anal Calorim 147, 2229–2237 (2022). https://doi.org/10.1007/s10973-021-10656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10656-y

Keywords

Navigation