Skip to main content
Log in

Octyltrimethylammonium bromide-assisted synthesis of maghemite powder by thermal decomposition of ferric nitrate and its properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Maghemite (γ-Fe2O3) powder was prepared by one-step thermal decomposition of ferric nitrate (Fe(NO3)3⋅9H2O) with the aid of octyltrimethylammonium bromide (OTAB). The effect of OTAB on the formation of γ-Fe2O3, structural properties and magnetic properties of the γ-Fe2O3 powder has been studied by X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, magnetic measurements and nitrogen adsorption–desorption. It is found that OTAB has a great influence on the thermal decomposition products of Fe(NO3)3⋅9H2O. With no OTAB addition, the thermal decomposition of Fe(NO3)3⋅9H2O produces only hematite (α-Fe2O3). In contrast, when OTAB is added to Fe(NO3)3⋅9H2O, a pure γ-Fe2O3 is formed, and its crystallite size can be controlled from 7.4 to 27.8 nm by varying the calcination temperature. Magnetic properties of γ-Fe2O3 powder are found to be strongly dependent on the calcination temperature. The saturation magnetization of γ-Fe2O3 powder increases from 28.6 to 67.5 emu g−1, when the calcination temperature increases from 160 to 200 °C. The sample obtained at 200 °C is nearly flake-like in shape and possesses a mesoporous structure with a Brunauer–Emmett–Teller surface area of 121.3 m2 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater. 2017;426:74–81.

    Article  CAS  Google Scholar 

  2. Ren G, Wang X, Zhang Z, Zhong B, Yang L, Xu D, Yang X. Facile synthesis of maghemite nanoparticle from waste green vitriol as adsorbent for adsorption of arsenite. J Mol Liq. 2018;259:32–9.

    Article  CAS  Google Scholar 

  3. Yousefi A, Seyyed Ebrahimi SA, Seyfoori A, Mahmoodzadeh HH. Maghemite nanorods and nanospheres: synthesis and comparative physical and biological properties. BioNanoSci. 2018;8:95–104.

    Article  Google Scholar 

  4. Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol. 2017;43:493–507.

    Article  CAS  Google Scholar 

  5. Sabale S, Kandesar P, Jadhav V, Komorek R, Motkuri RK, Yu XY. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater Sci. 2017;5:2212–25.

    Article  CAS  Google Scholar 

  6. Kumar N, Kulkarni K, Behera L, Verma V. Preparation and characterization of maghemite nanoparticles from mild steel for magnetically guided drug therapy. J Mater Sci Mater Med. 2017;28(116):1–13.

    CAS  Google Scholar 

  7. Múzquiz-Ramos EM, Guerrero-Chávez V, Macías-Martínez BI, Lo pez-Badillo CM, García-Cerda LA. Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceram Int. 2015;41:397–402.

    Article  Google Scholar 

  8. Darezereshkia E, Ranjbarb M, Bakhtiari F. One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method. J Alloy Compd. 2010;502:257–60.

    Article  Google Scholar 

  9. Lemine OM, Omri K, Iglesias M, Velasco V, Crespo P, de la Presa P, El Mir L, Bouzid H, Yousif A, Al-Hajry A. γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J Alloy Compd. 2014;607:125–31.

    Article  CAS  Google Scholar 

  10. Raut SA, Mutadak PR, Kumar S, Kanhe NS, Huprikar S, Pol HV, Phase DM, Bhoraskar SV, Mathe VL. Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties. J Magn Magn Mater. 2018;449:232–42.

    Article  CAS  Google Scholar 

  11. Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc. 2001;123:12798–801.

    Article  CAS  Google Scholar 

  12. Perez De Berti IO, Cagnoli MV, Pecchi G, Alessandrini JL, Stewart SJ, Bengoa JF, Marchetti SG. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology. 2013;24(175601):1–11.

    Google Scholar 

  13. Asuha S, Zhao S, Wu HY, Song L, Tegus O. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe–urea complex and their properties. J Alloys Compd. 2009;472:L23–4.

    Article  CAS  Google Scholar 

  14. Amala Jayanthi S, Muthu Gnana Theresa Nathan D, Jayashainy J, Sagayaraj P. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles. Mater Chem Phys. 2015;162:316–25.

    Article  Google Scholar 

  15. Basak S, Rane KS, Biswas P. Hydrazine-assisted, low-temperature aerosol pyrolysis method to synthesize γ-Fe2O3. Chem Mater. 2008;20:4906–14.

    Article  CAS  Google Scholar 

  16. Sarma L, Sarmah T, Aomoa N, Sarma S, Deshpande U, Bhuyan H, Ojha S, Bora U, Kakati M. Size-controlled synthesis of superparamagnetic iron-oxide and iron-oxide/iron/carbon nanotube nanocomposites by supersonic plasma expansion technique. J Phys D Appl Phys. 2018;51:195003.

    Article  Google Scholar 

  17. Babay S, Mhiri T, Toumi M. Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J Mol Struct. 2015;1085:286–93.

    Article  CAS  Google Scholar 

  18. Rabias I, Fardis M, Kehagias T, Kletsas D, Pratsinis H, Tsitroulil D, Maris TG, Papavassiliou G. Novel synthesis of ultra-small dextran coated maghemite nanoparticles for MRI and CT contrast agents via a low temperature co-precipitation reaction. J Nanosci Nanotechnol. 2015;15:205–10.

    Article  CAS  Google Scholar 

  19. Rajput S, Singh LP, Pittman CU Jr, Mohan D. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J Colloid Interf Sci. 2017;492:176–90.

    Article  CAS  Google Scholar 

  20. Apte SK, Naik SD, Sonawane RS, Kale BB. Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity. J Am Ceram Soc. 2007;90:412–4.

    Article  CAS  Google Scholar 

  21. Kalekar BB, Kameswaran R, Reddy AVR. Thermophysical studies on uranyl nitrate hexahydrate–Iron (III) nitrate nonahydrate system. J Therm Anal Calorim. 2013;112:117–26.

    Article  CAS  Google Scholar 

  22. Mendili YE, Bardeau JF, Randrianantoandro N, Greneche JM, Grasset F. Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci Technol Adv Mat. 2016;17:1597–609.

    Article  Google Scholar 

  23. Yen FS, Chen WC, Yang JM, Hong CT. Crystallite size variations of nanosized Fe2O3 powders during γ- to α-phase transformation. Nano Lett. 2002;2:245–52.

    Article  CAS  Google Scholar 

  24. Ayyub P, Multani M, Barma M, Palkar VR, Vijayaraghavan R. Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J Phys C: Solid State Phys. 1988;21:2229–45.

    Article  CAS  Google Scholar 

  25. Nogami M, Asuha S. Preparation of γ-Fe2O3-containing silica glasses by the sol-gel process. J Mater Sci Lett. 1993;12:1705–7.

    Article  CAS  Google Scholar 

  26. Elmasry MAA, Gaber A, Khater EMH. Thermal decomposition of Ni(II) and Fe(III) nitrates and their mixture. J Therm Anal. 1998;52:489–95.

    Article  CAS  Google Scholar 

  27. Cao D, Li H, Pan L, Li J, Wang X, Jing P, Cheng X, Wang W, Liu Q. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci Rep. 2016;6:32360.

    Article  CAS  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  29. Wang P, Lo IMC. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res. 2009;43:3727–34.

    Article  CAS  Google Scholar 

  30. Jiao F, Jumas J, Womes M, Chadwick AV, Harrison A, Bruce PG. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J Am Chem Soc. 2006;128:12905–9.

    Article  CAS  Google Scholar 

  31. Zhang X, Niu Y, Meng X, Li Y, Zhao J. Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm. 2013;15:8166–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 21267016), and Program for Inner Mongolia Excellence Specialist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asuha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L.H., Zhang, B., Zhao, S. et al. Octyltrimethylammonium bromide-assisted synthesis of maghemite powder by thermal decomposition of ferric nitrate and its properties. J Therm Anal Calorim 146, 2403–2410 (2021). https://doi.org/10.1007/s10973-021-10556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10556-1

Keywords

Navigation