Skip to main content
Log in

Determination of Co2 capture in rendering mortars produced with recycled construction and demolition waste by thermogravimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cement industries generate about 7% of global CO2 emissions. To reduce these emissions, this sector aims to improve energy efficiency reducing the clinker content in cement and carbon capture deployment. The CO2 captured in cementitious materials occurs due to the carbonation reaction. This study aims to evaluate the CO2 uptake capacity in rendering mortars produced with recycled construction and demolition waste (CDW) by natural carbonation. Mortars were produced by replacing sand for CDW at rates of 0; 25; 50; 75, and 100% were naturally carbonated in a laboratory environment. Specimens were submitted to the compression test, bulk density, and water absorption. The carbonation profile was determined by phenolphthalein spray test over time. The CO2 captured was evaluated by thermogravimetry. The kinetic model showed that the carbonation reaction occurs more quickly in mortars with a higher substitution content, which is related to the increase in the porosity of the system improving the diffusion processes of CO2, leading to an increase in the carbonation depth. In addition, as the replacement level of CDW increases, the water absorption increases in contrast with the diminishing of the bulk density. Up to 50% of replacement level, samples with CDW showed higher compressive strength than the other cases. Moreover, results showed that the cement mortars with 50 to 75% of sand replacement by CDW, presented the highest amount of CO2 captured at 69 days, leading to 85 kg of CO2 per m3 of mortar. The CO2 capturing through natural carbonation of rendering mortar can be considered as a compensatory strategy in the cycle of life assessment of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koutroulis AG. Dryland changes under different levels of global warming. Sci Total Environ Elsevier B V. 2019;655:482–511.

    Article  CAS  Google Scholar 

  2. Ding Y, Zhang S, Zhao L, Li Z, Kang S. Global warming weakening the inherent stability of glaciers and permafrost. Sci Bull Science China Press. 2019;64:245–53.

    Article  Google Scholar 

  3. Li J, Dong W, Oenema O, Chen T, Hu C, Yuan H, et al. Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity. Sci Total Environ Elsevier BV. 2019;646:290–9.

    Article  CAS  Google Scholar 

  4. Bao J, Lu W-H, Zhao J, Bi XT. Greenhouses for CO2 sequestration from atmosphere. Carbon Resour Convers Elsevier Ltd. 2018;1:183–90.

    Article  CAS  Google Scholar 

  5. Qiao H, Zheng F, Jiang H, Dong K. The greenhouse effect of the agriculture-economic growth-renewable energy nexus: evidence from G20 countries. Sci Total Environ Elsevier BV. 2019;671:722–31.

    Article  CAS  Google Scholar 

  6. Jiang J, Ye B, Liu J. Research on the peak of CO2 emissions in the developing world: current progress and future prospect. Appl Energy Elsevier. 2019;235:186–203.

    Article  CAS  Google Scholar 

  7. Talaei A, Pier D, Iyer AV, Ahiduzzaman M, Kumar A. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy Elsevier Ltd. 2019;170:1051–66.

    Google Scholar 

  8. Chen J, Shen L, Song X, Shi Q, Li S. An empirical study on the CO2 emissions in the Chinese construction industry. J Clean Prod Elsevier Ltd. 2017;168:645–54.

    Article  Google Scholar 

  9. Wijayasundara M, Mendis P, Ngo T. Comparative assessment of the benefits associated with the absorption of CO2 with the use of RCA in structural concrete. J Clean Prod Elsevier Ltd. 2017;158:285–95.

    Article  Google Scholar 

  10. Yang KH, Seo EA, Tae SH. Carbonation and CO2 uptake of concrete. Environ Impact Assess Rev. Elsevier Inc.; 2014;46:43–52.

  11. Xuan D, Zhan B, Poon CS. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem Concr Compos Elsevier Ltd. 2016;65:67–74.

    Article  CAS  Google Scholar 

  12. Kashef-Haghighi S, Shao Y, Ghoshal S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cem Concr Res Elsevier Ltd. 2015;67:1–10.

    Article  CAS  Google Scholar 

  13. Pade C, Guimaraes M. The CO2 uptake of concrete in a 100 year perspective. Cem Concr Res. 2007;37:1348–56.

    Article  CAS  Google Scholar 

  14. Zhang D, Ghouleh Z, Shao Y. Review on carbonation curing of cement-based materials. J CO2 Util Elsevier. 2017;21:119–31. https://doi.org/10.1016/j.jcou.2017.07.003.

    Article  CAS  Google Scholar 

  15. Possan E, Thomaz WA, Aleandri GA, Felix EF, dos Santos ACP. CO2 uptake potential due to concrete carbonation: a case study. Case Stud Constr Mater Elsevier Ltd. 2017;6:147–61.

    Google Scholar 

  16. Andrade C, Sanjuán MÁ. Updating carbon storage capacity of Spanish cements. Sustain. 2018;10:1–15.

    Article  Google Scholar 

  17. Kaliyavaradhan SK, Ling TC. Potential of CO2 sequestration through construction and demolition (C&D) waste—An overview. J CO2 Util Elsevier. 2017;20:234–42.

    Article  CAS  Google Scholar 

  18. Ekolu SO. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater. 2016;127:306–20.

    Article  CAS  Google Scholar 

  19. Xi F, Davis SJ, Ciais P, Crawford-Brown D, Guan D, Pade C, et al. Substantial global carbon uptake by cement carbonation. Nat Geosci. 2016;9:880–3.

    Article  CAS  Google Scholar 

  20. Possan E, Felix EF, Thomaz WA. CO2 uptake by carbonation of concrete during life cycle of building structures. J Build Pathol Rehabil. 2016;1:7.

    Article  Google Scholar 

  21. Petry GR, Rigo E, Possan E. Evaluation of the paint effect on CO2 uptake due to carbonation of coating mortars. 2020. https://ec.europa.eu/programmes/horizon2020/en/news/clean-and-efficient-co2-capture. Accessed 12 Dec 2020.

  22. Li L, Zhan BJ, Lu J, Poon CS. Systematic evaluation of the effect of replacing river sand by different particle size ranges of fine recycled concrete aggregates (FRCA) in cement mortars. Constr Build Mater Elsevier Ltd. 2019;209:147–55.

    Article  Google Scholar 

  23. Miranda LFR, Selmo SMS. CDW recycled aggregate renderings: Part I—Analysis of the effect of materials finer than 75 μm on mortar properties. Constr Build Mater. 2006;20:615–24.

    Article  Google Scholar 

  24. Islam R, Nazifa TH, Yuniarto A, Shanawaz Uddin ASM, Salmiati S, Shahid S. An empirical study of construction and demolition waste generation and implication of recycling. Waste Manag Elsevier Ltd. 2019;95:10–21.

    Article  Google Scholar 

  25. FELIX EF, Possan E. Balance emissions and CO2 uptake in concrete structures: simulation based on the cement content and type. Rev IBRACON Estruturas E Mater [Internet]. 2018; Available from: https://publons.com/publon/19566502/. Accessed 21 Oct 2020.

  26. ABNT—Associação Brasileira de Normas Técnicas. NBR 13276—Mortars applied on walls and ceilings—Determination of the consistence index. Rio de Janeiro 2016. p. 2.

  27. ABNT—Associação Brasileira de Normas Técnicas. NBR 13279—Mortars applied on walls and ceilings—Determination of the flexural and the compressive strength in the hardened stage. Rio de Janeiro; 2005. p. 9.

  28. ABNT—Associação Brasileira de Normas Técnicas. NBR 13280—Mortars applied on walls and ceilings—Determination of the specific gravity in the hardened stage. Rio de Janeiro; 2005. p. 2.

  29. ABNT—Associação Brasileira de Normas Técnicas. NBR 15259—Mortars applied on walls and ceilings—Determination of water absorption coefficient due to capilary action. Rio de Janeiro; 2005. p. 3.

  30. CPC-18. Measurement of hardened concrete carbonation depth. Mater Struct. 1988;21:453–5. https://doi.org/10.1007/BF02472327.

    Article  Google Scholar 

  31. Van Balen K, Van Gemert D. Modelling lime mortar carbonation. Mater Struct. 1994;27:393–8.

    Article  Google Scholar 

  32. Ferreira RLS, Anjos MAS, Nóbrega AKC, Pereira JES, Ledesma EF 2019 The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars. Constr Build Mater [Internet]. 208:601–12. Available from: http://www.sciencedirect.com/science/article/pii/S0950061819305392. Accessed 21 Oct 2020.

  33. Andrade JJ, Possan E, Squiavon JZ, Ortolan TLP. Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr Build Mater. 2018;161:70–83.

    Article  Google Scholar 

  34. Chever L, Pavía S, Howard R. Physical properties of magnesian lime mortars. Mater Struct Constr. 2010;43:283–96.

    Article  CAS  Google Scholar 

  35. Weerdt K, Plusquellec G, Belda Revert A, Geiker MR, Lothenbach B. Effect of carbonation on the pore solution of mortar. Cem Concr Res Elsevier. 2019;118:38–56. https://doi.org/10.1016/j.cemconres.2019.02.004.

    Article  CAS  Google Scholar 

  36. Khan N, Dollimore D, Alexander K, Wilburn FW. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate. Thermochim Acta. 2001;367–368:321–33.

    Article  Google Scholar 

  37. Yoo Y, Kang D, Choi E, Park J, Huh IS. Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio. Chem Eng J Elsevier. 2019;370:237–50.

    Article  CAS  Google Scholar 

  38. Zhang J, Zhou X, Dong C, Sun Y, Yu J. Investigation of amorphous calcium carbonate’s formation under high concentration of magnesium: the prenucleation cluster pathway. J Cryst Growth Elsevier BV. 2018;494:8–16.

    Article  CAS  Google Scholar 

  39. Silva RV, Neves R, De Brito J, Dhir RK. Carbonation behaviour of recycled aggregate concrete. Cem Concr Compos Elsevier Ltd. 2015;62:22–32.

    Article  CAS  Google Scholar 

  40. MAZURANA L. CO2 uptake in rendering mortars by carbonation [Internet]. Universidade Tecnológica Federal do Paraná; 2019. Available from: https://repositorio.utfpr.edu.br/jspui/handle/1/4733. Accessed 21 Oct 2020.

Download references

Acknowledgements

The authors would like to thank the financial support from CAPES (Coordination for the Improvement of Higher Education Personnel) and the Araucária Foundation by granting of PNPD and productivity scholarships, respectively. To the National Council for Scientific and Technological Development (CNPq) for research support (process 309549 / 2019-1).

Author information

Authors and Affiliations

Authors

Contributions

Lissandra Mazurana: Conceptualization, Methodology, Experimental Work, Results and Discussion. Paulo Rodrigo Stival Bittencourt: Conceptualization, Supervision, Writing-Original draft Preparation. Fernando Reinoldo Scremin: Thermogravimetric test. Results analysis. Writing-Original draft Preparation. Alex Neves Junior: Overall assessment. Results analysis. Writing- Reviewing and Editing. Edna Possan: Funding acquisition; Conceptualization, Supervision, Methodology, Writing- Reviewing and Editing.

Corresponding author

Correspondence to E. Possan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurana, L., Bittencourt, P.R.S., Scremin, F.R. et al. Determination of Co2 capture in rendering mortars produced with recycled construction and demolition waste by thermogravimetry. J Therm Anal Calorim 147, 1071–1080 (2022). https://doi.org/10.1007/s10973-020-10436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10436-0

Keywords

Navigation