Skip to main content
Log in

Steam gasification of powder river basin coal: surface reaction kinetics and intraparticle mass transfer restrictions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Steam gasification kinetics studies were conducted in a modified drop tube fixed bed reactor to approximate the injection of ambient temperature coal into a fluidized bed gasifier. Product gases were measured using a customized rapid response gas analysis system with a quadrupole mass spectrometer. Experiments were done within Regime I temperature range (no mass transfer restrictions), and effects of temperature and pressure on surface chemical reaction were analyzed using three different particle size ranges. The random pore model closely fits the experimental results and the fitting parameters are listed. Char characterizations are presented, including surface area measurements and scanning electron microscope images. Mass transfer resistances were analyzed by comparing experimental and theoretically predicted effectiveness factors using the Thiele modulus, based on particle sizes, temperature, total pressure, and steam partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bell DA, Towler BF, Fan M. Coal gasification and its applications. Oxford, UK: Elsevier Inc.; 2011. https://doi.org/10.1016/B978-0-8155-2049-8.10003-8.

    Book  Google Scholar 

  2. Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel. 2006;85:163–9. https://doi.org/10.1016/j.fuel.2005.07.024.

    Article  CAS  Google Scholar 

  3. Bryan Woodruff R, Weimer AW. A novel technique for measuring the kinetics of high-temperature gasification of biomass char with steam. Fuel. 2013;103:749–57. https://doi.org/10.1016/j.fuel.2012.09.035.

    Article  CAS  Google Scholar 

  4. Lewis AD, Fletcher EG, Fletcher TH. CO2 gasification rates of petroleum coke in a pressurized flat-flame burner entrained-flow reactor. Energy Fuels. 2014;28:4447–57.

    Article  CAS  Google Scholar 

  5. Huang S, Wu S, Wu Y, Liu Y, Gao J. Steam cogasification of petroleum coke and different rank coals for enhanced coke reactivity and hydrogen-rich gas production. Energy Fuels. 2014;28:3614–22.

    Article  CAS  Google Scholar 

  6. Kajitani S, Tay H-L, Zhang S, Li C-Z. Mechanisms and kinetic modelling of steam gasification of brown coal in the presence of volatile–char interactions. Fuel. 2013;103:7–13. https://doi.org/10.1016/j.fuel.2011.09.059.

    Article  CAS  Google Scholar 

  7. Ye DP, Agnew JB, Zhang DK. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel. 1998;77:1209–19. https://doi.org/10.1016/S0016-2361(98)00014-3.

    Article  CAS  Google Scholar 

  8. Miura K, Hashimoto K, Silveston PL. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity. Fuel. 1989;68:1461–75. https://doi.org/10.1016/0016-2361(89)90046-X.

    Article  CAS  Google Scholar 

  9. Tan S, Paglieri SN, Li D. Nano-scale sulfur-tolerant lanthanide oxysulfide/oxysulfate catalysts for water–gas-shift reaction in a novel reactor configuration. Catal Commun. 2016;73:16–21. https://doi.org/10.1016/j.catcom.2015.10.007.

    Article  CAS  Google Scholar 

  10. Zhang F, Xu D, Wang Y, Wang Y, Gao Y, Popa T, et al. Catalytic CO2 gasification of a powder river basin coal. Fuel Process Technol. 2015;130:107–16. https://doi.org/10.1016/j.fuproc.2014.09.028.

    Article  CAS  Google Scholar 

  11. Matveev IB, Messerle VE, Ustimenko AB. Investigation of plasma-aided bituminous coal gasification. IEEE Trans Plasma Sci. 2009;37:580–5. https://doi.org/10.1109/TPS.2009.2013710.

    Article  CAS  Google Scholar 

  12. McLendon TR, Lui AP, Pineault RL, Beer SK, Richardson SW. High-pressure co-gasification of coal and biomass in a fluidized bed. Biomass Bioenergy. 2004;26:377–88. https://doi.org/10.1016/j.biombioe.2003.08.003.

    Article  CAS  Google Scholar 

  13. Tremel A, Spliethoff H. Gasification kinetics during entrained flow gasification—Part III: modelling and optimisation of entrained flow gasifiers. Fuel. 2013a;107:170–82.

    Article  CAS  Google Scholar 

  14. Messenböck R, Dugwell D, Kandiyoti R. Coal gasification in CO2 and steam: development of a steam injection facility for high-pressure wire-mesh reactors. Energy Fuels. 1999;13:122–9.

    Article  Google Scholar 

  15. Zeng X, Wang F, Wang Y, Li A, Yu J, Xu G. Characterization of char gasification in a micro fluidized bed reaction analyzer. Energy Fuels. 2014;28:1838–45.

    Article  CAS  Google Scholar 

  16. Harris D, Roberts D, Henderson D. Gasification behaviour of Australian coals at high temperature and pressure. Fuel. 2006;85:134–42. https://doi.org/10.1016/j.fuel.2005.07.022.

    Article  CAS  Google Scholar 

  17. Wu H, Bryant G, Benfell K, Wall T. An experimental study on the effect of system pressure on char structure of an australian bituminous coal. Energy Fuels. 2000;14:282–90.

    Article  CAS  Google Scholar 

  18. Weiland NT, Means NC, Morreale BD. Product distributions from isothermal co-pyrolysis of coal and biomass. Fuel. 2012;94:563–70. https://doi.org/10.1016/j.fuel.2011.10.046.

    Article  CAS  Google Scholar 

  19. Silbermann R, Gomez A, Gates I, Mahinpey N. Kinetic studies of a Novel CO2 gasi fication method using coal from deep unmineable seams. Ind Eng Chem Res. 2013;52:14787–97. https://doi.org/10.1021/ie401918e.

    Article  CAS  Google Scholar 

  20. Gomez A, Silbermann R, Mahinpey N. A comprehensive experimental procedure for CO2 coal gasification: Is there really a maximum reaction rate? Appl Energy. 2014;124:73–81. https://doi.org/10.1016/j.apenergy.2014.02.077.

    Article  CAS  Google Scholar 

  21. Tremel A, Spliethoff H. Gasification kinetics during entrained flow gasification—Part II: intrinsic char reaction rate and surface area development. Fuel. 2013b;107:653–61. https://doi.org/10.1016/j.fuel.2012.10.053.

    Article  CAS  Google Scholar 

  22. Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel. 2002;81:539–46.

    Article  CAS  Google Scholar 

  23. Wall TF, Liu GS, Wu HW, Roberts DG, Benfell KE, Gupta S, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog Energy Combust Sci. 2002;28:405–33. https://doi.org/10.1016/S0360-1285(02)00007-2.

    Article  CAS  Google Scholar 

  24. Wang Y, Bell DA. Reaction kinetics of powder river basin coal gasification in carbon dioxide using a modified drop tube reactor. Fuel. 2015;140:616–25. https://doi.org/10.1016/j.fuel.2014.09.106.

    Article  CAS  Google Scholar 

  25. Huo W, Zhou Z, Wang F, Wang Y, Yu G. Experimental study of pore diffusion effect on char gasification with CO2 and steam. Fuel. 2014;131:59–65. https://doi.org/10.1016/j.fuel.2014.04.058.

    Article  CAS  Google Scholar 

  26. Popa T, Fan M, Argyle MD, Slimane RB, Bell DA, Towler BF. Catalytic gasification of a powder river basin coal. Fuel. 2013;103:161–70. https://doi.org/10.1016/j.fuel.2012.08.049.

    Article  CAS  Google Scholar 

  27. Fletcher TH. Time-resolved temperature measurements of individual coal particles during devolatilization. Combust Sci Tech. 1989;63:89–105.

    Article  CAS  Google Scholar 

  28. Walker PL, Rusinko F, Austin LG. Gas reactions of carbon. Adv Catal. 1959;11:133–221.

    CAS  Google Scholar 

  29. Roberts DG, Harris DJ. Char gasification with O2, CO2, and H2O: effects of pressure on intrinsic reaction kinetics. Energy Fuels. 2000;14:483–9. https://doi.org/10.1021/ef9901894.

    Article  CAS  Google Scholar 

  30. Peng FF, Lee IC, Yang RYK. Reactivities of in situ and ex situ coal chars during gasification in steam at 1000–1400°C. Fuel Process Technol. 1995;41:233–51. https://doi.org/10.1016/0378-3820(94)00086-9.

    Article  CAS  Google Scholar 

  31. Roberts D, Harris D, Wall T. Total pressure effects on chemical reaction rates of chars with O2, CO2 and H2O. Fuel. 2000;79:1997–8. https://doi.org/10.1016/S0016-2361(00)00070-3.

    Article  CAS  Google Scholar 

  32. Zeng D. Effects of pressure on coal pyrolysis at high heating rates and char combustion. Provo: Brigham Young University; 2005.

    Google Scholar 

  33. Fogler HS. Elements of chemical reaction engineering, vol. 4. Upper Saddle River: Prentice Hall International Series; 2005.

    Google Scholar 

  34. Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. Edition 1. New York: John Wiley & Sons, Inc.; 1960.

  35. Smith JM. Chemical engineering kinetics, vol. 3. New York: McGraw-Hill; 1981.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kyle Winkelman for his assistance in building the experimental reactor. We thank our colleague, Dr. William Schaffers, for his helpful technical discussions and assistance. We also thank Dr. Joseph Holles and Dr. Qinghua Lai for providing the surface area apparatus. This research was supported by the University of Wyoming, School of Energy Resources, as part of the U.S.—China Clean Energy Research Center for Coal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Bell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tan, S. & Bell, D.A. Steam gasification of powder river basin coal: surface reaction kinetics and intraparticle mass transfer restrictions. J Therm Anal Calorim 146, 2209–2222 (2021). https://doi.org/10.1007/s10973-020-10407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10407-5

Keywords

Navigation