Skip to main content
Log in

Synthesis and characterization of lithium silicates from organosilicone precursors for carbon dioxide adsorption

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lithium silicates are ceramic materials known for its high CO2 adsorption capacity and excellent cyclic stability at high temperatures. In the present work, an attempt has been made to use different types of organosilicone precursors viz., methyltrimethoxysilane, triethoxyphenylsilane, polyoligomericsilsesquioxane and polydimethylsiloxane as the silica precursor for the synthesis of lithium silicates for CO2 adsorption. Thermogravimetry and differential scanning calorimetry were used to optimize the thermal decomposition of precursor to lithium silicate. Polydimethylsiloxane could not produce lithium silicate, as it decomposed to form volatile cyclic silicon oligomers at high temperatures. Lithium silicates were obtained from the other three precursors and were characterized for its structure and morphological features using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron micrography, energy-dispersive X-ray spectrometry, particle size and surface area analysers. The CO2 adsorption/desorption studies using thermogravimetry showed that lithium silicates synthesized from the silica precursor, methyltrimethoxysilane, retained a cyclic adsorption capacity of 31% for 10 cycles. The study reveals that hydrolysable aliphatic organosilicone compounds are better silica precursors for the synthesis of lithium silicates for regenerable CO2 sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://phys.org/news/2019-06-carbon-dioxide-atmosphere-high.html.

  2. Henriques ST, Borowiecki KJ. The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800. Energy Policy. 2017;101:537–49.

    CAS  Google Scholar 

  3. Duan Y, Luebke D, Pennline H. Theoretical screening of solid sorbents for CO2 capture applications. Int J Clean Coal Energy. 2012;1:1–11.

    Google Scholar 

  4. Chaffee AL, Knowles GP, Liang Z, Zhang J, Xiao P, Webley PA. CO2 capture by adsorption: materials and process development. Int J Greenh Gas Control. 2007;1(1):11–8.

    CAS  Google Scholar 

  5. Chiao CH, Chen JL, Lan CR, Chen S, Hsu HW. Development of carbon dioxide capture and storage technology—Taiwan power company perspective. Sustain Environ Res. 2011;21(1):1–8.

    CAS  Google Scholar 

  6. Riaza J, Álvarez L, Gil MV, Pevida C, Pis JJ, Rubiera F. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor. Energy. 2011;36:5314–9.

    CAS  Google Scholar 

  7. Mohammad S, Mansooreh S, Maryam TR, Reza S. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci World J. 2014. https://doi.org/10.1155/2014/828131.

    Article  Google Scholar 

  8. Mohammad S, Maryam TR, Mansooreh S. Carbon dioxide capture and storage: a general review on adsorbents. Int Sch Sci Res Innov. 2012;6(10):1–8.

  9. Muhammad Y, Leong LK, Mohammed JKB, Humayun N, Areeb S, Sumathi S. Recent advancements, fundamental challenges, and opportunitiesin catalytic methanation of CO2. Energy Fuels. 2016;30:8815–31.

    Google Scholar 

  10. Dennis YCL, Giorgio C, Mercedes MV. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426–43.

    Google Scholar 

  11. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89(9):1609–24.

    CAS  Google Scholar 

  12. Lee SY, Park SJ. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11.

    Google Scholar 

  13. Lee ZH, Lee KT, Bhatia S, Mohamed AR. Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials. Renew Sustain Energy Rev. 2012;16(5):2599–609.

    CAS  Google Scholar 

  14. Jacek P, Adam C, Robert P, Beata T. MgO/CaO-loaded porous carbons for carbon dioxide capture effects accompanying regeneration process. J Therm Anal Calorim. 2013;111:357–64. https://doi.org/10.1007/s10973-012-2354-y.

    Article  CAS  Google Scholar 

  15. Ye L, Firdaus A. High temperature adsorption of carbon dioxide on Cu–Al hydrotalcite-derived mixed oxides: kinetics and equilibria by thermogravimetry. J Therm Anal Calorim. 2009;97:885–9. https://doi.org/10.1007/s10973-009-0156-7.

    Article  CAS  Google Scholar 

  16. Cruz D, Bulbulian S. Synthesis of Li4SiO4 by a modified combustion method. J Am Ceram Soc. 2005;88(7):1720–4.

    CAS  Google Scholar 

  17. Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda S, Kogo R, Hagiwara Y. Novel CO2 absorbents using lithium-containing oxide. Int J Appl Ceram Technol. 2005;2:467.

    CAS  Google Scholar 

  18. Essaki K, Kato M. Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets. J Mater Sci Lett. 2005;40:5017.

    CAS  Google Scholar 

  19. Lakshminarayana BKG, Seetharamu S, Sharon O. Lithium ceramics for high temperature CO2 capture: a review. J CPRI. 2014;10:395–408.

    Google Scholar 

  20. Nair BN, Burwood RP, Goh VJ, Nakagawa K, Yamaguchi T. Lithium based ceramic materials and membranes for high temperature CO2 separation. Prog Mater Sci. 2009;54:511–41.

    CAS  Google Scholar 

  21. Yingchao H, Wenqiang L, Yuandong Y, Mingyu Q, Hailong L. CO2 capture by Li4SiO4 sorbents and their applications: current developments and new trends. Chem Eng J. 2019;359:604–25.

    Google Scholar 

  22. Xianyao Y, Yingjie L, Xiaotong M, Jianli Z, Zeyan W. Performance of Li4SiO4 material for CO2 capture: a review. Int J Mol Sci. 2019;20:928.

    Google Scholar 

  23. Michele DD, Amorim S, Camilla DM, Humberto JJ, Regina FPMM. Kinetics of the carbonation reaction of lithium orthosilicate using a typical CO2 concentration of combustion gases. Chem Eng J. 2016;283:388–96.

    Google Scholar 

  24. Kato M, Yoshikawa S, Nakagawa K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett. 2002;21:485–7.

    CAS  Google Scholar 

  25. Pfeiffer H, Bosch P, Bulbulian S. Synthesis of lithium silicates. J Nucl Mater. 1998;257:309–17.

    CAS  Google Scholar 

  26. Izquierdo MT, Turan A, Garcia S, Maroto-Valer MM. Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO2 capture at high temperature. J Mater Chem A. 2018;6:3249–57.

    CAS  Google Scholar 

  27. Wang K, Wang X, Zhao P, Guo X. High-temperature capture of CO2 on lithium based sorbents prepared by a water-based sol–gel technique. Chem Eng Technol. 2014;37:1552–8.

    CAS  Google Scholar 

  28. Subha PV, Nair BN, Hareesh P, Mohamed AP, Yamaguchi T, Warrier KGK, Hareesh US. Enhanced CO2 absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach. J Mater Chem A. 2014;2:12792–8.

    CAS  Google Scholar 

  29. Wu X, Wen Z, Xu X, Wang X, Lin J. Synthesis and characterization of Li4SiO4 nano-powders by a water-based sol–gel process. J Nucl Mater. 2009;392:471–5.

    CAS  Google Scholar 

  30. Bretado ME, Velderrain VG, Gutierrez DL, Collins-Martinez V, Ortiz ALA. New synthesis route to Li4SiO4 as CO2 catalytic/sorbent. Catal Today. 2005;107–108:863–7.

    Google Scholar 

  31. Ortiz AL, Bretado MAE, Velderrain VG, Zaragoza MM, Gutierrez JS, Gutierrez DL, Collins-Martinez V. Experimental and modeling kinetic study of the CO2 absorption by Li4SiO4. Int J Hydrog Energy. 2014;39:16656–66.

    Google Scholar 

  32. Choudhary A, Sahu BS, Mazumder R, Bhattacharyya S, Chaudhuri P. Synthesis and sintering of Li4SiO4 powder from rice husk ash by solution combustion method and its comparison with solid state method. J Alloys Compd. 2014;590:440–5.

    CAS  Google Scholar 

  33. Rao GJ, Mazumder R, Bhattacharyya S, Chaudhuri P. Synthesis, CO2 absorption property and densification of Li4SiO4 powder by glycine-nitrate solution combustion method and its comparison with solid state method. J Alloys Compd. 2017;725:461–71.

    CAS  Google Scholar 

  34. Nambo A, He J, Nguyen TQ, Atla V, Druffel T, Sunkara M. Ultrafast carbon dioxide sorption kinetics using lithium silicate nanowires. Nano Lett. 2017;17:3327–33.

    CAS  PubMed  Google Scholar 

  35. Hu Y, Liu W, Zhou Z, Yang Y. Preparation of Li4SiO4 sorbents for carbon dioxide capture via a spray-drying technique. Energy Fuel. 2018;32:4521–7.

    CAS  Google Scholar 

  36. Romero-Ibarra IC, Ortiz-Landeros J, Pfeiffer H. Microstructural and CO2 chemisorption analyses of Li4SiO4: effect of surface modification by the ball milling process. Thermochim Acta. 2013;567:118–24.

    CAS  Google Scholar 

  37. Ortiz-Landeros J, Romero-Ibarra IC, Gomez-Yanez C, Lima E, Pfeiffer H. Li4+x(Si1−xAlx)O4 solid solution mechanosynthesis and kinetic analysis of the CO2 chemisorption process. J Phys Chem C. 2013;117:6303–11.

    CAS  Google Scholar 

  38. Niu M, Li X, Ouyang J, Yang H. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture. RSC Adv. 2016;6:44106–12.

    CAS  Google Scholar 

  39. Wang K, Zhao P, Guo X, Han D, Chao Y. High temperature capture of CO2 on Li4SiO4 based sorbents from biomass ashes. Environ Prog Sustain Energy. 2015;34:526–32.

    Google Scholar 

  40. Wang K, Guo X, Zhao P, Wang F, Zheng C. High temperature capture of CO2 on lithium-based sorbents from rice husk ash. J Hazard Mater. 2011;189:301–7.

    CAS  PubMed  Google Scholar 

  41. Olivares-Marin M, Drage T, Maroto-Valer MM. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. Int J Greenh Gas Control. 2010;4:623–9.

    CAS  Google Scholar 

  42. Zhao M, Fan H, Yan F, Song Y, He X, Memon MZ, Bhatia SK, Ji G. Kinetic analysis for cyclic CO2 capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Trans. 2018;47:9038–50.

    CAS  PubMed  Google Scholar 

  43. Pan Y, Zhang Y, Zhou T, Louis B, O’Hare D, Wang Q. Fabrication of lithium silicates as highly efficient high-temperature CO2 sorbents from SBA-15 precursor. Inorg Chem. 2017;56:7821–34.

    CAS  PubMed  Google Scholar 

  44. Zhang Y, Gao Y, Pfeiffer H, Louis B, Sun L, O’Hare D, Wang Q. Recent advances in lithium containing ceramics based sorbents for high-temperature CO2 capture. J Mater Chem A. 2019;7:7962–8005.

    CAS  Google Scholar 

  45. Choudhary A, Sahoo SP, Behera SK. Lithium orthosilicate ceramics with preceramic polymer as silica source. Ceram Int. 2017;43:7951–7.

    CAS  Google Scholar 

  46. Dominika B, Izabela MK, Wojciech N. Assessment of the sorption capacity and regeneration of carbon dioxide sorbents using thermogravimetric methods. J Therm Anal Calorim. 2013;113:157–60.

    Google Scholar 

  47. Radhakrishnan TS. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: thermal degradation of polydimethyl siloxanes. J Appl Polym Sci. 1999;73:441–50.

    CAS  Google Scholar 

  48. Supriya N, Aswathy UV, Ann M, Rajeev R. Studies on the thermal properties of silicone polymer based thermal protection systems for space applications. J Therm Anal Calorim. 2017;128:1731–41.

    Google Scholar 

  49. Nakamoto K. Infrared and Raman spectra of inorganic and co-ordination compounds. New York: Wiley; 1986.

    Google Scholar 

Download references

Acknowledgements

The authors thank Director, Vikram Sarabhai Space Centre for permission to publish this work and colleagues in Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre for their analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajeev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supriya, N., Rajeev, R. Synthesis and characterization of lithium silicates from organosilicone precursors for carbon dioxide adsorption. J Therm Anal Calorim 147, 135–143 (2022). https://doi.org/10.1007/s10973-020-10322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10322-9

Keywords

Navigation