Skip to main content
Log in

On modified Fourier heat flux in stagnation point flow of magnetized Burgers' fluid subject to homogeneous–heterogeneous reactions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current article, an effort has been made to model the forced convection flow phenomenon of magnetized viscoelastic fluid near a stagnation point. Moreover, Cattaneo–Christov heat flux model and the impact of uniform heat rise/fall are employed to examine the aspects of thermal energy transport. Additionally, the scrutiny of the fluid concentration feature by utilizing homogeneous–heterogeneous reactions is also an important effort of the present investigation. Ordinary differential equations (ODEs) are achieved by adopting the method of similarity transformations. The characteristics of physical parameters are assessed by employing numerical technique BVP Midrich scheme. Pertained outcomes are depicted in the form of graphs. The thermal distribution of Burgers’ fluid exhibits a diminishing trend for escalation in the extent of thermal relaxation heat flux parameter. Moreover, the concentration rate of the fluid deteriorates for higher strength of homogenous response, whereas it augments for greater magnitude of heterogeneous response. The validation of the present investigation is ensured by comparing with already published studies. The numerical values for the coefficient of heat transfer rate of Burgers’ fluid are also computed and depicted in graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fourier JBJ. Théorie Analytique De La Chaleur, Paris; 1822.

  2. Cattaneo C. Sulla conduzione del calore, Atti Semin. Mat Fis Univ Modena Reggio Emilia. 1948;3:83–101.

    Google Scholar 

  3. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Article  Google Scholar 

  4. Straughan B. Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf. 2010;53:95–8.

    Article  Google Scholar 

  5. Ciarletta M, Straughan B. Uniqueness and structural stability for the Cattaneo–Christov equations. Mech Res Commun. 2010;37:445–7.

    Article  Google Scholar 

  6. Haddad SAM. Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int J Heat Mass Transf. 2014;68:659–68.

    Article  Google Scholar 

  7. Tibullo V, Zampoli V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun. 2011;38:77–9.

    Article  Google Scholar 

  8. Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett. 2014;38:87–93.

    Article  Google Scholar 

  9. Hayat T, Khan MI, Farooq M, Alsaedi A, Waqas M, Yasmeen T. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int J Heat Mass Transf. 2016;99:702–10.

    Article  Google Scholar 

  10. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A. Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq. 2016;220:642–8.

    Article  CAS  Google Scholar 

  11. Malik R, Khan M, Mushtaq M. Cattaneo–Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J Mol Liq. 2016;222:430–4.

    Article  CAS  Google Scholar 

  12. Khan M, Ahmad L, Khan WA, Alshomrani AS, Alzahrani AK, Alghamdi MS. A 3D Sisko fluid flow with Cattaneo–Christov heat flux model and heterogeneous-homogeneous reactions: a numerical study. J Mol Liq. 2017;238:19–26.

    Article  CAS  Google Scholar 

  13. Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous Dissipation effects. Appl Therm Eng. 2017;112:1281–8.

    Article  CAS  Google Scholar 

  14. Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Therm Eng. 2016;98:850–61.

    Article  CAS  Google Scholar 

  15. Hsiao KL. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy. 2017;130:486–99.

    Article  Google Scholar 

  16. Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat and Mass Transf. 2017;112:983–90.

    Article  Google Scholar 

  17. Irfan M, Khan M, Khan WA. On model for three-dimensional Carreau fluid flow with Cattaneo–Christov double diffusion and variable conductivity: a numerical approach. J Braz Soc Mech Sci Eng. 2018;40:577.

    Article  Google Scholar 

  18. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phy Lett A. 2019;383:276–81.

    Article  CAS  Google Scholar 

  19. Iqbal Z, Khan M, Ahmed A, Ahmed J, Hafeez A. Thermal energy transport in Burgers nanofluid flow featuring the Cattaneo–Christov double diffusion theory. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01386-y.

    Article  Google Scholar 

  20. Ahmed S, Nadeem S, Muhammad N, Khan MN. Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09504-2.

    Article  Google Scholar 

  21. Rahman UJ, Khan U, Ahmad S, Ramzan M, Suleman M, Lu D, Inam S. Numerical simulation of Darcy–Forchheimer 3D unsteady nanofluid flow comprising carbon nanotubes with Cattaneo–Christov heat flux and velocity and thermal slip conditions. Processes. 2019;7(10):687.

    Article  Google Scholar 

  22. Ahmad S, Nadeem S. Cattaneo–Christov-based study of SWCNT–MWCNT/EG Casson hybrid nanofluid flow past a lubricated surface with entropy generation. Appl Nanosci. 2020;10:10. https://doi.org/10.1007/s13204-020-01367-1.

    Article  CAS  Google Scholar 

  23. Nadeem S, Ahmad S, Muhammad N. Analysis of ferrite nanoparticles in liquid. Pramana J Phys. 2020. https://doi.org/10.1007/s12043-019-1913-1.

    Article  Google Scholar 

  24. Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I equal diffusivities. Fluid Dyn Res. 1995;16:311–33.

    Article  Google Scholar 

  25. Merkin JH. A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow. Math Comput Model. 1996;24:125–36.

    Article  Google Scholar 

  26. Hayat T, Khan MI, Farooq M, Yasmeen T, Alsaedi A. Stagnation point flow with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. J Mol Liq. 2016;220:49–55.

    Article  CAS  Google Scholar 

  27. Xu H. A homogeneous-heterogeneous reaction model for heat fluid flow in the stagnation region of a plane surface. Int Commun Heat Mass Transf. 2017;87:112–7.

    Article  CAS  Google Scholar 

  28. Hayat T, Haider F, Muhammad T, Ahmad B. Darcy-Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous-heterogeneous reactions. J Therm Anal Calorim. 2019;137:1939–49.

    Article  CAS  Google Scholar 

  29. Hayat T, Aziz A, Muhammad T, Alsaedi A. Significance of homogeneous-heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes. J Therm Anal Calorim. 2020;139:183–95.

    Article  CAS  Google Scholar 

  30. Ahmed J, Khan M, Ahmed L. Effectiveness of homogeneous-heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features. J Therm Anal Calorim. 2020;139:3185–95.

    Article  CAS  Google Scholar 

  31. Khan M, Ahmed J, Ali W. An improved heat conduction analysis in swirling viscoelastic fluid with homogeneous-heterogeneous reactions. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09342-2.

    Article  Google Scholar 

  32. Khan M, Ahmed A, Ahmed J. Analysis of Cattaneo–Christov theory for unsteady flow of Maxwell fluid over stretching cylinder. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09343-1.

    Article  Google Scholar 

  33. Hafeez A, Khan M, Ahmed J. Thermal aspects of chemically reactive Oldroyd-B fuid flow over a rotating disk with Cattaneo–Christov heat flux theory. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09421-4.

    Article  Google Scholar 

  34. Hafeez A, Khan M, Ahmed J, Ahmed A, Iqbal Z. Flow of Oldroyd-B fluid over a rotating disk through porous medium with Soret–Dufour effects. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04575-7.

    Article  Google Scholar 

  35. Hayat T, Khan SA, Khan MI, Momani S, Alsaedi A. Cattaneo–Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Comput Methods Prog Biomed. 2020;187:105247.

    Article  CAS  Google Scholar 

  36. Khan M, Iqbal Z, Ahmed A. Stagnation point flow of magnetized Burgers’ nanofluid subject to thermal radiation. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01360-8.

    Article  Google Scholar 

  37. Fathizadeh M, Madani M, Khan Y, Faraz N, Yildirim A, Tutkun S. An effective modification of the homotopy perturbation method for MHD viscous flow over a stretching sheet. J King Saud Univ Sci. 2013;25:107–13.

    Article  Google Scholar 

  38. Ahmed A, Khan M, Irfan M, Ahmed J. Transient MHD flow of Maxwell nanofluid subject to non linear thermal radiation and convective heat transport. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01375-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Khan, M. & Ahmed, A. On modified Fourier heat flux in stagnation point flow of magnetized Burgers' fluid subject to homogeneous–heterogeneous reactions. J Therm Anal Calorim 147, 815–826 (2022). https://doi.org/10.1007/s10973-020-10308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10308-7

Keywords

Navigation