Skip to main content
Log in

Extraction of fatty acids contained in fruit from Ficus benjamina: lipid profile and thermal studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work were studied the fatty acids of the fruit from Ficus benjamina, which is a tree of the Moraceae family and is largely found in Brazil as an ornamental tree, normally used for afforestation in public ways and also for indoor residences. The fruit has a diameter around 1 cm which is appreciated by several types of birds. The lipids extraction from fruit was carried out with hexane reagent, and the fatty acids were evaluated by chromatography and also by thermal analysis. The thermal characterization was done in different purge gases and heating rates. The results obtained showed that the fatty acid has a light green colour wax with a high melting point. Chromatography analysis showed that the composition of the saturated and unsaturated fatty acids was 53.48 and 46.52%, respectively. The thermoanalytical study showed that this wax has several mass losses, which are dependent on the type of purge gas used. Details regarding their kinetic behaviour were acquired and showed that the analysis at nitrogen purge gas is very similar to that observed at carbon gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Noya AD, Rondon Neto RM. Análise da arborização urbana de três cidades da região norte do Estado de Mato Grosso. Acta Amazonica. 2010;40(4):647.

    Article  Google Scholar 

  2. Dantas IC, Souza CMC. Arborização urbana na cidade de Campina Grande - PB: Inventário e suas espécies. Rev Biol Ciênc Terra. 2004;4:1–18.

    Google Scholar 

  3. Rocha RT, Leles PSS, Neto SNO. Arborização de vias públicas em Nova Iguaçu, RJ: o caso dos bairros rancho novo e centro. Rev Árvore. 2004;28(4):599–607.

    Article  Google Scholar 

  4. Duarte RH. À sombra dos fícus: cidade e natureza em Belo Horizonte. Ambient Soc. 2007;10(2):24–44.

    Article  Google Scholar 

  5. Retana-Salazar AP, Sánchez-Chacón E. Anatomía de la agalla en Ficus benjamina (Moraceae) asociada a “thrips” (Tubulifera: Phlaeothripidae). Rev Biol Trop. 2009;57:179–86.

    Google Scholar 

  6. Fonseca FY, Antunes AZ. Frugivoria e predação de sementes por aves no parque estadual Alberto Löfgren, São Paulo SP. Rev Inst Flor. 2007;19:81–91.

    Google Scholar 

  7. Seth MK. Trees and their economic importance. Bot Rev. 2003;69(4):321–76.

    Article  Google Scholar 

  8. Focke M, Hemmer W, Wohrl S, Gotz M, Jarisch R. Cross-reactivity between Ficus benjamina latex and fig fruit in patients with clinical fig allergy. Clin Exp Allergy. 2003;33:971–7.

    Article  CAS  Google Scholar 

  9. Levy DA, Leynadier F. Latex and food allergy. Rev Fr Allergol. 1997;37(8):1188–94.

    Google Scholar 

  10. Hemmer W, Focke M, Gotz M, Jarisch R. Sensitization to Ficus benjamina: relationship to natural rubber latex allergy and identification of foods implicated in the Ficus-fruit syndrome. Clin Exp Allergy. 2004;34:1251–8.

    Article  CAS  Google Scholar 

  11. Imran M, Rasool N, Rizwan K, Zubair M, Riaz M, Zia-Ul-Haq M, Rana UA, Nafady A, Jaafar JZ. Chemical composition and Biological studies of Ficus benjamina. Chem Cent J. 2014;8:12.

    Article  Google Scholar 

  12. Reyes BA, Ruiz RC, Martínez-Cruz J, Bautista F, Goguitchaichvili A, Carvallo C, Morales J. Ficus benjamina leaves as indicator of atmospheric pollution: a reconaissance study. Stud Geophys Geod. 2012;56(3):879–87.

    Article  Google Scholar 

  13. Souza SR, Vasconcelos PC, Mantovani W, Carvalho LRF. Emissão por folhas de Ficus benjamina L. (Moraceae) de compostos orgânicos voláteis oxigenados. Rev Brasil Bot. 2002;25:413–8.

    Article  CAS  Google Scholar 

  14. Farag SF. Phytochemical and pharmacological studies of Ficus benjamina L. Leaves Mans J Pharm Sci. 2005;21(2):19–36.

    CAS  Google Scholar 

  15. Capela JMV, Capela MV, Ribeiro CA. Nonisothermal kinetic parameters estimated using nonlinear regression. J Math Chem. 2009;45:769–75.

    Article  CAS  Google Scholar 

  16. M. Grigiante M, Brighenti M, Antolini D. Analysis of the impact of TG data sets on activation energy (Ea): case study applied to torrefaction of biomasses by means of isoconversional methods. J Therm Anal Calorim 2017;129:553–65.

  17. Kobelnik M, Fontanari GG, Ribeiro CA, Crespi MS. Evaluation of thermal behavior and chromatographic characterization of oil extracted from seed of Pittosporum undulatum. J Therm Anal Calorim. 2018;131:371–8.

    Article  CAS  Google Scholar 

  18. Kobelnik M, Fontanari GG, Marques MR, Ribeiro CA, Crespi MS. Thermal behavior and chromatographic characterization of oil extracted from the nut of the Butia (Butia capitata). J Therm Anal Calorim. 2016;123:2517–22.

    Article  CAS  Google Scholar 

  19. Kobelnik M, Fontanari GG, Marques MR, Areas JAG, Franzin BT, Pastre IA, Fertonani FL. Thermal and kinetic studies of white lupin (Lupinus albus) oil. J Therm Anal Calorim. 2018;131:775–82.

    Article  Google Scholar 

  20. Kobelnik M, Fontanari GG, Soares MAS, Figueiredo AG, Ribeiro CA. Study of the thermal behavior of bicuíba oil (Virola bicuhyba). J Therm Anal Calorim. 2014;115:2107–13.

    Article  CAS  Google Scholar 

  21. Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol chem. 1957;226(1):497–509.

    Article  CAS  Google Scholar 

  22. Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973;22(6):475–6.

    CAS  PubMed  Google Scholar 

  23. Gesteira AS, Schuster I, José IC, Piovesan ND, Viana JMS, Barros EG, Moreira MA. Biometrical analyses of linolenic acid content of soybean seeds. Genet Mol Biol. 2003;26(1):65–8.

    Article  CAS  Google Scholar 

  24. Urrutia O, Soret B, Insausti K, Mendizabal JA, Purroy A, Arana A. The effects of linseed or chia seed dietary supplementation on adipose tissue development, fatty acid composition, and lipogenic gene expression in lambs. Small Rumin Res. 2015;123:204–11.

    Article  Google Scholar 

  25. Radojković M, Zeković Z, Mašković P, Vidović S, Mandić A, Mišan A, Đurović S. Biological activities and chemical composition of morus leaves extracts obtained by maceration and supercritical fluid extraction. J Supercrit Fluid. 2016;117:50–8.

    Article  Google Scholar 

  26. Kuvendzieva S, Lisichkova K, Zekovićb Z, Marinkovskia M, Musliu ZH. Supercritical fluid extraction of fish oil from common carp (Cyprinus carpio L.) tissues. J Supercrit Fluid. 2018;133(1):528–34.

    Article  Google Scholar 

  27. Khas-Erdene Q, Wang JQ, Bu DP, Wang L, Drackley JK, Liu QS, Yang G, Wei HY, Zhou LY. Short communication: Responses to increasing amounts of free α-linolenic acid infused into the duodenum of lactating dairy cows. J Dairy Sci. 2010;93:1677–84.

    Article  CAS  Google Scholar 

  28. Handl J, Meloun M, VladimíraMuzáková V. Inflammatory markers in dependence on the plasma concentration of 37 fatty acids after the coronary stent implantation. J Pharm Biom Anal. 2018;149:96–105.

    Article  CAS  Google Scholar 

  29. Belury MA, Cole RM, Snoke DB, Banh T, Angelotti A. Linoleic acid, Glycemic control and type 2 diabetes. Prostag Leukotr Ess. 2018;132:30–3.

    Article  CAS  Google Scholar 

  30. Knothe G, Dunn RO. A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc. 2009;86:843–56.

    Article  CAS  Google Scholar 

  31. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29:178–90.

    Article  CAS  Google Scholar 

  32. Lopes FCF, Barros PAV, Bruschi JH, Silva PHF, Peixoto MGCD, Gomide CAM, Duque ACA, Gama MAS. Milk fatty acids profile of Holstein cows grazing tropical forages supplemented with two concentrate levels. Arq Bras Med Vet Zootec. 2011;63(2):518–21.

    Article  CAS  Google Scholar 

  33. Loften JR, Linn JG, Drackley JK, Jenkins TC, Soderholm CG, Kertz AF. Invited review: palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci. 2014;97:1–14.

    Article  Google Scholar 

  34. Gerhard G, Robert O, Dunn RO. A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc. 2009;86:843–56.

    Article  Google Scholar 

  35. Garrido-Delgado R, Muñoz-Pérez ME, Arce L. Detection of adulteration in extra virgin olive oils by using UV-IMS and chemometric analysis. Food Control. 2018;85:292–9.

    Article  CAS  Google Scholar 

  36. Singhal RS, Kulkarni PR, Rege DV. Handbook of indices of food quality and authenticity. In: Singhal RS, Kulkarni PR, Rege DV, editors. Edible oils and fats. Cambridge: Woodhead Publishing Limited; 1997. p. 300–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Kobelnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobelnik, M., Fontanari, G.G., Soares, R.A.M. et al. Extraction of fatty acids contained in fruit from Ficus benjamina: lipid profile and thermal studies. J Therm Anal Calorim 146, 1687–1693 (2021). https://doi.org/10.1007/s10973-020-10187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10187-y

Keywords

Navigation