Skip to main content
Log in

Characterization, thermal and ceramic properties of phyllite clays from southeast Spain

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present research studied a set of phyllite clays from several deposits in southeast Spain. These phyllite clays have traditionally been used as sealing material to impermeabilize roofs, embankments, ponds, construction and waste landfill, with recent applications in the preparation of new mortars. However, studies on thermal behaviour and ceramic properties of phyllite clays have been scarce. The present research showed a summary of previous characterization studies on representative phyllite clays from these deposits with additional results. Mineralogical, by X-ray diffraction, and chemical, by X-ray fluorescence characterization of these samples were summarized. Thermal analysis methods (DTA–TG and thermal diffractometry) were applied to achieve a more complete mineralogical characterization. Several phyllite clay samples were selected for a ceramic study by firing pressed powdered samples up to 1300 °C. Sintered or vitrified materials, with porosities almost zero, were obtained from these phyllite clays after firing at 1100–1200 °C, with apparent densities between 2.1 and 2.4 g cm−3. Higher firing temperatures (> 1250 °C) produced deformation and expansion of the ceramic bodies. These results allowed obtain the vitrification temperature (Tv) and the temperature of the maximum bulk density (Td). According to the previous mineralogical and chemical characterization and the values of these parameters, the phyllite clay samples were classified in three varieties, as follows: (1) Micaceous, characterized by predominant layer silicates, mainly muscovite or illite, alkaline elements (mainly K2O higher than 3.5 mass%) and lower values of both Tv and Td, (2) Quartzitic, with predominant quartz and SiO2 and intermediate values of Tv and Td, and (3) Carbonaceous, characterized by predominant dolomite, medium contents of CaO and MgO and higher values of both Tv and Td. These results are interesting for the application of these phyllite clays as ceramic raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valera TS, Ribeiro AP, Valenzuela-Díaz FR, Yoshiga A, Ormanji W, Toffoll SM. The effect of phyllite as a filler for PVC plastisols. In: Proceedings 60th Annual Technology Conference Society Plastics Engineers (ANTEC 2002). San Francisco (USA): 2002 (3). pp 3949–53.

  2. Karakitsios V, Rigakis N. Evolution and petroleum potential of Western Greece. J Petroleum Geol. 2007;30:197–218.

    Article  CAS  Google Scholar 

  3. Oliva-Urcia B, Rahl JM, Schleicher AM, Parés JME. Correlation between the anisotropy of the magnetic susceptibility, strain and X-ray Texture Goniometry in phyllites from Creta. Tectonophysics. 2010;486:120–31.

    Article  Google Scholar 

  4. Ramamurthy TA, Rao GVA, Singh JB. Engineering behaviour of phyllites. Eng Geol. 1993;33:209–25.

    Article  Google Scholar 

  5. Adom-Asamoah M, Owusu-Afrifa R. Study of concrete properties using phyllite as coarse aggregates. Mater Design. 2010;31:4561–6.

    Article  CAS  Google Scholar 

  6. Oliveira TF, Beck MH, Escosteguy PV, Bortoluzzi EC, Modolo ML. The effect of substitution of hydrated lime with phyllite on mortar quality. Appl Clay Sci. 2015;105–106:113–7.

    Article  Google Scholar 

  7. Andrade PS, Saraiva AA. Physical and mechanical characterization of phyllites and metagreywackes in central Portugal. Bull Eng Geol Environ. 2010;69:207–14.

    Article  CAS  Google Scholar 

  8. Ruiz Cruz MD. Mixed-layer mica-chlorite in very low-grade metaclastites from the Maláguide Complex (Betic Cordilleras, Spain). Clay Miner. 2001;36:307–24.

    Article  Google Scholar 

  9. Ruiz Cruz MD, Franco F, Sanz de Galdeano C, Novák J. Evidences of contrasting low-grade metamorphic conditions from clay mineral assemblages in Triassic-Alpujárride-Maláguide transitional units in the Betic Cordilleras. Clay Miner. 2006;41:619–36.

    Article  CAS  Google Scholar 

  10. Garzón E, García-Rodríguez IG, Ruiz A, Sánchez-Soto PJ. Phyllites used as waterproofing layer materials for greenhouses crops in Spain: multivariate statistical analysis applied to their classification based on X-ray fluorescence analysis. X-Ray Spectrom. 2009;38:429–35.

    Article  Google Scholar 

  11. Garzón E, Sánchez-Soto PJ, Romero E. Physical and geotechnical properties of clay phyllites. Appl Clay Sci. 2010;48:307–18.

    Article  Google Scholar 

  12. Garzón E, Cano M, O´Kelly BC, SánchezSoto PJ. Phyllite-clay cement composites having improved engineering properties and material applications. Appl Clay Sci. 2015;114:229–33.

    Article  Google Scholar 

  13. Garzón E, Fernández-Escobar N, Gotor-Martínez F, Sánchez-Soto PJ. Spanish Patent P20151530329. 2015.

  14. Arce C, Garzón E, Sánchez-Soto PJ. Phyllite clays as raw materials replacing cement in mortars: properties of new impermeabilizing mortars. Constr Build Mater. 2019;224:348–58.

    Article  CAS  Google Scholar 

  15. Garzón E, Romero E, Sánchez-Soto PJ. Correlation between chemical and mineralogical characteristics and permeability of phyllite clays using multivariate statistical analysis. Appl Clay Sci. 2016;129:92–101.

    Article  Google Scholar 

  16. Sánchez-Soto PJ, Ruiz-Conde A, Bono R, Raigón M, Garzón E. Thermal evolution of a slate. J Therm Anal Calorim. 2007;90:133–41.

    Article  Google Scholar 

  17. González-Miranda FM, Garzón E, Reca J, Pérez-Villarejo L, Martínez-Martínez S, Sánchez-Soto PJ. Thermal behaviour of sericite clays as precursors of mullite materials. J Therm Anal Calorim. 2018;132:967–77.

    Article  Google Scholar 

  18. Galán Huertos E, Espinosa de los Monteros J. El caolín en España. Características, identificación y ensayos cerámicos. Madrid: Sociedad Española de Cerámica y Vidrio; 1974.

  19. Espinosa de los J, Del Río MA, Martínez R, Alvarez-Estrada D, Aleixandre V. Sericite clay as a raw material for the fabrication of whiteware bodies. Ceramurg Int. 1977;3:10914.

    Google Scholar 

  20. García-Ramos G, González-García F, Sánchez-Soto PJ, Ruiz-Abrio MT. Propiedades refractarias y estudio de los productos obtenidos a partir de un conjunto de materiales silicoaluminosos españoles I. Bol Soc Esp Ceram Vidr. 1985;14:217–22.

    Google Scholar 

  21. Brindley GW, Brown G. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society; 1980.

    Book  Google Scholar 

  22. Brindley GW, Lemaitre J. Chemistry of clays and clay minerals. In: Newman ACD, editor. Monograph 6. London: Mineralogical Society; 1987.

    Google Scholar 

  23. Kooster van Groos AF, Guggenheim S. Thermal analysis in clay science. In: J.W. Stucki, D.L. Bish and F.A. Mumpton Eds., CMS Workshop Lectures Vol.3, The Clay Minerals Society. Bulder (Colorado): 1990.

  24. Schomburg J, Zwahr H. Thermal differential diagnosis of mica mineral group. J Therm Anal. 1997;48:135–9.

    Article  CAS  Google Scholar 

  25. Criado JM, Ortega A. Kinetic study of thermal decomposition of dolomite by controlled transformation rate thermal analysis (CRTA) and TG. J Therm Anal Calorim. 1991;37:2369–75.

    Article  CAS  Google Scholar 

  26. Olszak-Humienik M, Jablonski M. Thermal behavior of natural dolomite. J Therm Anal Calorim. 2015;119:2239–48.

    Article  CAS  Google Scholar 

  27. Wang G, Wang H, Zhang N. In situ high-temperature X-ray diffraction study of illite. Appl Clay Sci. 2017;146:254–63.

    Article  CAS  Google Scholar 

  28. James J, Rao S. Characterization of silica in rice husk ash. Am Ceram Soc Bull. 1986;65:1177–80.

    CAS  Google Scholar 

  29. Norris AW, Taylor D, Thorpe I. Range curves: an experimental method for the study of vitreous pottery bodies. Br Ceram Trans J. 1979;78:102–8.

    CAS  Google Scholar 

  30. Sánchez-Soto PJ, Díaz-Hernández JL, Raigón M, Ruiz-Conde A, García-Ramos G. Ceramic properties of a Spanish clay containing illite, chlorite and quartz. Br Ceram Trans J. 1994;93:196–201.

    Google Scholar 

  31. Lecomte GL, Pateyroon B, Blanchart P. Experimental study and simulation of vertical section mullite-ternary eutectic (985 & #xB0;C) in the SiO2-Al2O3-K2O system. Mater Res Bull. 2004;39:1469–78.

    Article  CAS  Google Scholar 

  32. Kolářová M, Kloužková A, Kloužek J, Schwarz J. Thermal behaviour of glazed ceramic bodies. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09484-3.

    Article  Google Scholar 

  33. SánchezSoto PJ, Raigón M, Jiménez Haro MC, Justo A, PérezRodríguez JL, Pascual J. Caracterización y propiedades cerámicas de una pizarra alumínica que contiene pirofilita. Bol Soc Esp Ceram Vidr. 1994;33:199–205.

    Google Scholar 

  34. Ferrari S, Gualteri AF. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.

    Article  CAS  Google Scholar 

  35. Garzón E, Morales L, Ortiz-Rodríguez IM, Sánchez-Soto PJ. An approach to the heating dynamics of residues from greenhouse-crop plant biomass originated by tomatoes (Solanum lycopersicum, L.). Environ Sci Pollut Res. 2018;25:25880–7.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports of Andalusian Regional Government through Research Groups AGR 107 and TEP 204 are kindly acknowledged. The authors want to dedicate this paper to Professor Víctor Orera Clemente, recently deceased, for his contribution in the field of materials research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Garzón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzón, E., Pérez-Villarejo, L. & Sánchez-Soto, P.J. Characterization, thermal and ceramic properties of phyllite clays from southeast Spain. J Therm Anal Calorim 142, 1659–1670 (2020). https://doi.org/10.1007/s10973-020-10160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10160-9

Keywords

Navigation