Skip to main content
Log in

Natural convection of nanofluid in a U-shaped enclosure emphasizing on the effect of cold rib dimensions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Natural convection characteristics in an enclosure having U-shape that contains nanofluid are studied by extensively examining the effect of aspect ratio. The three outer walls of cavity are at isothermal high temperature, and facing inner walls are at a uniform low temperature. Computations are performed to explore the effect of the aspect ratios of cold wall to hot walls of the U-shaped cavity in the horizontal and vertical directions on the velocity and temperature characteristics in the cavity. The impact of various Rayleigh numbers and nanoparticle volume fractions of CuO is also studied. The computational results showed that all the considered parameters have a considerable influence on the heat transfer performance. Furthermore, the augmentation in heat transfer rate introduced by nanoparticles is more profound for larger vertical aspect ratios and low Rayleigh numbers. In addition, a noticeable relationship between the contribution of nanoparticles and the two different aspect ratios studied in this work is observed. Furthermore, the influence of vertical aspect ratio on the heat transfer is more pronounced compared to the horizontal aspect ratio, i.e., increasing the height of the cold wall is more effective than increasing the width of the cold wall for most of the cases. As a result of the comprehensive analysis, a correlation for mean Nusselt number including the influence of aspect ratio of cold rib, Rayleigh number and nanoparticle concentration is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARH :

Aspect ratio of H/L

ARW :

Aspect ratio of W/L

C p :

Specific heat (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

H :

Height of the cold rib (m)

h :

Convective heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

l :

Local position on the hot wall (m)

L :

Length of the hot wall of the cavity (m)

Nu:

Nusselt number

P :

Dimensionless pressure

Pr:

Prandtl number

q :

Heat flux (W m−2)

Ra:

Rayleigh number

θ :

Dimensionless temperature

u :

Horizontal component of dimensionless velocity

v :

Vertical component of dimensionless velocity

W :

Width of the cold rib (m)

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

ϕ :

Nanoparticle volume fraction

µ :

Dynamic viscosity (Pa s)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

c:

Cold

eff:

Effective

f:

Fluid

h:

Hot

nf:

Nanofluid

l:

Local

p:

Particle

References

  1. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  2. Ghasemi B, Aminossadati SM. Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int J Therm Sci. 2010. https://doi.org/10.1016/j.ijthermalsci.2009.12.017.

    Article  Google Scholar 

  3. Arıcı M, Kan M, Karabay H. Effect of aspect ratio on natural convection in a cavity with wavy walls. Acta Phys Pol A. 2015. https://doi.org/10.12693/APhysPolA.128.B-197.

    Article  Google Scholar 

  4. Boualit A, Zeraibi N, Chergui T, Lebbi M, Boutina L, Laouar S. Natural convection investigation in square cavity filled with nanofluid using dispersion model. Int J Hydrog Energy. 2017. https://doi.org/10.1016/j.ijhydene.2016.07.132.

    Article  Google Scholar 

  5. Ma Y, Mohebbi R, Rashidi MM, Yang M. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.07.026.

    Article  Google Scholar 

  6. Arıcı M, Tütüncü E, Yıldız Ç, Li D. Enhancement of PCM melting rate via internal fin and nanoparticles. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119845.

    Article  Google Scholar 

  7. Xu D, Hu Y, Li D. A lattice Boltzmann investigation of two-phase natural convection of Cu–water nanofluid in a square cavity. Case Stud Therm Eng. 2019. https://doi.org/10.1016/j.csite.2018.11.009.

    Article  Google Scholar 

  8. Mliki B, Abbassi MA, Omri A, Belkacem Z. Lattice Boltzmann analysis of MHD natural convection of CuO–water nanofluid in inclined C-shaped enclosures under the effect of nanoparticles Brownian motion. Powder Technol. 2017. https://doi.org/10.1016/j.powtec.2016.11.054.

    Article  Google Scholar 

  9. Rao SS, Srivastava A. Interferometric study of natural convection in a differentially-heated cavity with Al2O3–water based dilute nanofluids. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.074.

    Article  Google Scholar 

  10. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2018.11.006.

    Article  Google Scholar 

  11. Estellé P, Mahian O, Mare T, Öztop HF. Natural convection of CNT water-based nanofluids in differentially heated square cavity. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6102-1.

    Article  Google Scholar 

  12. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7520-4.

    Article  Google Scholar 

  13. Rahmati AR, Tahery AA. Numerical study of nanofluid natural convection in a square cavity with a hot obstacle using lattice Boltzmann method. Alex Eng J. 2018. https://doi.org/10.1016/j.aej.2017.03.030.

    Article  Google Scholar 

  14. Yahiaoui A, Djezzar M, Naji H. Simulating of heat transfer enhancement via a water-based nanofluid in enclosures with curved side walls. Int Commun Heat Mass Transf. 2019. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.003.

    Article  Google Scholar 

  15. Bondarenko DS, Sheremet MA, Oztop HF, Ali ME. Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element Heatline visualization. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.091.

    Article  Google Scholar 

  16. Da Silva AK, Gosselin L. Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection. Int J Heat Mass Transf. 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.08.028.

    Article  Google Scholar 

  17. Mahmoodi M, Hashemi SM. Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int J Therm Sci. 2012. https://doi.org/10.1016/j.ijthermalsci.2012.01.002.

    Article  Google Scholar 

  18. Dutta S, Goswami N, Biswas AK, Pati S. Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu–water nanofluid. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.024.

    Article  Google Scholar 

  19. Mohebbi R, Izadi M, Sajjadi H, Delouei AA, Sheremet MA. Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys. A. 2019. https://doi.org/10.1016/j.physa.2019.04.067.

    Article  Google Scholar 

  20. Salari M, Malekshah EH, Maleskhah MH. Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3–water nanofluid heated partially from side walls. Alex Eng J. 2018. https://doi.org/10.1016/j.aej.2017.07.004.

    Article  Google Scholar 

  21. Wang L, Yang X, Huang C, Chai Z, Shi B. Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno’s model. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2018.09.109.

    Article  Google Scholar 

  22. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017. https://doi.org/10.1016/j.jtice.2017.01.006.

    Article  Google Scholar 

  23. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7225-8.

    Article  Google Scholar 

  24. Chowdhury R, Parvin S, Khan AH. Numerical study of double-diffusive natural convection in a window shaped cavity containing multiple obstacles filled with nanofluid. Procedia Eng. 2017. https://doi.org/10.1016/j.proeng.2017.08.173.

    Article  Google Scholar 

  25. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7518-y.

    Article  Google Scholar 

  26. Sajjadi H, Mohammadifar H, Delouei AA. Investigation of the effect of the internal heating system position on heat transfer rate utilizing Cu/water nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08611-z.

    Article  Google Scholar 

  27. Ghasemi B. Magnetohydrodynamic natural convection of nanofluids in U-shaped enclosures. Numer Heat Transf A. 2013. https://doi.org/10.1080/10407782.2013.742728.

    Article  Google Scholar 

  28. Mansour MA, Bakeir MA, Chamkha A. Natural convection inside a C-shaped nanofluid-filled enclosure with localized heat sources. Int J Numer Methods Heat Fluid. 2014. https://doi.org/10.1108/HFF-06-2013-0198.

    Article  Google Scholar 

  29. Mojumder S, Saha S, Saha S, Mamun MAH. Effect of magnetic field on natural convection in a C-shaped cavity filled with ferrofluid. Procedia Eng. 2015. https://doi.org/10.1016/j.proeng.2015.05.012.

    Article  Google Scholar 

  30. Armaghani T, Kasaiepoor A, Alavi N, Rashidi MM. Numerical investigation of water-alumina nanofluid natural convection heat transfer and entropy generation in a baffled L-shaped cavity. J Mol Liq. 2016. https://doi.org/10.1016/j.molliq.2016.07.103.

    Article  Google Scholar 

  31. Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072.

    Article  Google Scholar 

  32. Yıldız Ç, Arıcı M, Karabay H. Effect of inclination angle on natural convection of nanofluids in a U-shaped cavity. Int J Environ Sci Technol. 2019. https://doi.org/10.1007/s13762-019-02407-2.

    Article  Google Scholar 

  33. Snoussi L, Ouerfelli N, Chesneau X, Chamkha AJ, Belgacem FBM. Guizani A 2018 Natural convection heat transfer in a nanofluid filled u-shaped enclosures: numerical investigations. Heat Transf Eng. 2017;10(1080/01457632):1379343.

    Google Scholar 

  34. Bouhalleb M, Abbassi H. Numerical investigation of heat transfer by CuO–water nanofluid in rectangular enclosures. Heat Transf Eng. 2016. https://doi.org/10.1080/01457632.2015.1025003.

    Article  Google Scholar 

  35. Mohammadtabar M, Mohammadtabar F, Shokri R, Sadrzadeh M. Numerical investigation of the entropy generation due to natural convection in a partially heated square cavity filled with nanofluids. Heat Transf Eng. 2017. https://doi.org/10.1080/01457632.2016.1255092.

    Article  Google Scholar 

  36. Abu-Nada E, Oztop HF, Pop I. Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection. Superlattice Microstruct. 2012. https://doi.org/10.1016/j.spmi.2012.01.002.

    Article  Google Scholar 

  37. Mahmoodi M. Numerical simulation of free convection of a nanofluid in L-shaped cavities. Int J Therm Sci. 2011. https://doi.org/10.1016/j.ijthermalsci.2011.04.009.

    Article  Google Scholar 

  38. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci. 2005. https://doi.org/10.1016/j.ijthermalsci.2004.12.005.

    Article  Google Scholar 

  39. Makulati N, Kasaeipoor A, Rashidi MM. Numerical study of natural convection of a water–alumina nanofluid in inclined C-shaped enclosures under the effect of magnetic field. Adv Powder Technol. 2016. https://doi.org/10.1016/j.apt.2016.02.020.

    Article  Google Scholar 

  40. Oztop HF, Mobedi M, Abu-Nada E, Pop I. A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int J Heat Mass Transf. 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.007.

    Article  Google Scholar 

  41. Torki M, Etesami N. Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08445-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müslüm Arıcı.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, Ç., Arıcı, M., Karabay, H. et al. Natural convection of nanofluid in a U-shaped enclosure emphasizing on the effect of cold rib dimensions. J Therm Anal Calorim 146, 801–811 (2021). https://doi.org/10.1007/s10973-020-10023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10023-3

Keywords

Navigation