Skip to main content
Log in

Abilities of porous materials for energy saving in advanced thermal systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using materials with porous natures to enhance the thermal efficiency of various thermal systems has attracted much attention. This is owing to the low cost, light weight, and great features of these materials to improvement in the thermal efficiency of thermal systems. In addition, using porous materials, as a passive method, does not consume any external energy. Increasing thermal efficiencies of different thermal systems by using these materials is related to many factors including the kind of thermal system, position of insert, porosity, thermal conductivity, thickness, and nature of these materials. This paper aims to perform a comprehensive review on the application of different materials with porous structures in different thermal systems such as heat pipes, thermosyphons, electronic cooling modules, boiling systems, phase change materials, etc. In addition, a brief discussion is presented about the application of porous model to simulate fluid flow and heat transfer in plate-fin heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abd-Elhady MS, Nasreldin M, Elsheikh MN. Improving the performance of evacuated tube heat pipe collectors using oil and foamed metals. Ain Shams Eng J. 2018;9:2683–9.

    Google Scholar 

  2. Abdul Mujeebu M, Abdullah MZ, Abu Bakar MZ, Mohamad AA, Abdullah MK. Applications of porous media combustion technology—a review. Appl Energy. 2009;86:1365–75.

    Google Scholar 

  3. Alizadeh R, Rezaei Gomari S, Alizadeh A, Karimi N, Li LKB. Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium. Comput Math Appl. 2019. https://doi.org/10.1016/j.camwa.2019.10.021.

    Article  Google Scholar 

  4. Alshare AA, Simon TW, Strykowski PJ. Simulations of flow and heat transfer in a serpentine heat exchanger having dispersed resistance with porous-continuum and continuum models. Int J Heat Mass Transf. 2010;53:1088–99.

    CAS  Google Scholar 

  5. An CS, Kim MH. Thermo-hydraulic analysis of multi-row cross-flow heat exchangers. Int J Heat Mass Transf. 2018;120:534–9.

    Google Scholar 

  6. Ardalan MV, Alizadeh R, Fattahi A, Rasi NA, Doranehgard MH, Karimi N. Analysis of unsteady mixed convection of Cu-water nanofluid in an oscillatory, lid-driven enclosure using Lattice Boltzmann Method. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09789-3.

    Article  Google Scholar 

  7. Awais M, Bhuiyan AA. Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Therm Sci Eng Prog. 2018;5:524–45.

    Google Scholar 

  8. Bai P, Tang T, Tang B. Enhanced flow boiling in parallel microchannels with metallic porous coating. Appl Therm Eng. 2013;58:291–7.

    CAS  Google Scholar 

  9. Bhanja D, Kundu B, Kumar Mandal P. Thermal analysis of porous pin fin used for electronic cooling. Proc Eng. 2013;64:956–65.

    Google Scholar 

  10. Bhatti MM, Shahid A, Abbas T, Alamri SZ, Ellahi R. Study of activation energy on the movement of Gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes. 2020;8:328.

    Google Scholar 

  11. Bian H, Kurwitz C, Sun Z, Cheng K, Chen K. Enhanced nucleate boiling on 3D-printed micro-porous structured surface. Appl Therm Eng. 2018;141:422–34.

    CAS  Google Scholar 

  12. Byon C. Heat pipe and phase change heat transfer technologies for electronics cooling. Electron Cool. 2016. https://doi.org/10.5772/62328.

    Article  Google Scholar 

  13. Chen Z, Tong X, Liu H, Guo C, Qu F, Cong H. A design of the micro-plate loop heat pipe and development of the porous nickel capillary wick. Proc Eng. 2017;205:3931–7.

    CAS  Google Scholar 

  14. Cho H, Jin L, Jeong S. Experimental investigations on cryogenic loop heat pipe performances and characteristics. Cryogenics. 2020;105:102970.

    CAS  Google Scholar 

  15. Choi J, Sano W, Zhang W, Yuan Y, Lee Y, Borca-Tasciuc DA. Experimental investigation on sintered porous wicks for miniature loop heat pipe applications. Exp Therm Fluid Sci. 2013;51:271–8.

    Google Scholar 

  16. Dawidowicz B, Cieslinski JT. Heat transfer and pressure drop during flow boiling of pure refrigerants and refrigerant/oil mixtures in tube with porous coating. Int J Heat Mass Transf. 2012;55:2549–58.

    CAS  Google Scholar 

  17. Dehghan M, Valipour MS, Saedodin S, Mahmoudi Y. Thermally developing flow inside a porous-filled channel in the presence of internal heat generation under local thermal non-equilibrium condition: a perturbation analysis. Appl Therm Eng. 2016;98:827–34.

    Google Scholar 

  18. Dehghan M, Valipour MS, Keshmiri A, Saedodin S, Shokri N. On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study. Int J Heat Mass Transf. 2016;92:815–23.

    Google Scholar 

  19. Dehghan M, Valipour MS, Saedodin S, Mahmoudi Y. Investigation of forced convection through entrance region of a porous-filled microchannel: an analytical study based on the scale analysis. Appl Therm Eng. 2016;99:446–54.

    Google Scholar 

  20. Delavar MA, Azimi M. Using porous material for heat transfer enhancement in heat exchangers: review. J. Eng Sci Technol Rev. 2013;6:14–6.

    CAS  Google Scholar 

  21. Deng D, Liang D, Tang Y, Peng J, Han X, Pan M. Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Exp Therm Fluid Sci. 2013;50:1–9.

    Google Scholar 

  22. Dhanabal S, Annamalai M, Muthusamy K. Experimental investigation of thermal performance of metal foam wicked flat heat pipe. Exp Therm Fluid Sci. 2017;82:482–92.

    Google Scholar 

  23. Ebrahimi-Dehshali M, Najm-Barzanji SZ, Hakkaki-Fard A. Pool boiling heat transfer enhancement by twisted-tape fins. Appl Therm Eng. 2018;135:170–7.

    Google Scholar 

  24. El-Genk MS, Parker JL. Enhanced boiling of HFE-7100 dielectric liquid on porous graphite. Energy Convers Manag. 2005;46:2455–81.

    CAS  Google Scholar 

  25. El-Genk MS, Ali AF. Enhanced nucleate boiling on copper micro-porous surfaces. Int Multiph Flow. 2010;36:780–92.

    CAS  Google Scholar 

  26. Fogaça W, Mori S, Imanishi K, Okuyama K, Piqueira JRC. Effect of honeycomb porous plate on critical heat flux in saturated pool boiling of artificial seawater. Int J Heat Mass Transf. 2018;125:994–1002.

    Google Scholar 

  27. Guan Y, Gupta V, Wan M, Li LKB. Forced synchronization of quasiperiodic oscillations in a thermoacoustic system. J Fluid Mech. 2019;879:390–421.

    CAS  Google Scholar 

  28. Habib R, Karimi N, Yadollahi B, Doranehgard MH, Li LKB. A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations. Int J Heat Mass Transf. 2020;153:119657.

    Google Scholar 

  29. Hamidi S, Heinze T, Galvan B, Miller S. Critical review of the local thermal equilibrium assumption in heterogeneous porous media: dependence on permeability and porosity contrasts. Appl Therm Eng. 2019;147:962–71.

    Google Scholar 

  30. He YL, Liu Q, Li Q, Tao WQ. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review. Int J Heat Mass Transf. 2019;129:160–97.

    Google Scholar 

  31. He S, Zhou P, Ma Z, Deng W, Zhang H, Chi Z, Liu W, Liu Z. Experimental study on transient performance of the loop heat pipe with a pouring porous wick. Appl Therm Eng. 2020;164:114450.

    Google Scholar 

  32. Hu B, Wang Q, Liu ZH. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications. Energy Convers Manag. 2015;89:376–86.

    CAS  Google Scholar 

  33. Hussein AM, Sharma KV, Bakar RA, Kadirgama K. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew Sustain Energy Rev. 2014;29:734–43.

    Google Scholar 

  34. Ismail KAR, Miranda RF. Two-dimensional axisymmetrical model for a rotating porous wicked heat pipe. Appl Therm Eng. 1997;17:135–55.

    CAS  Google Scholar 

  35. Jafari D, Franco A, Filippeschi S, Marco PD. Two-phase closed thermosyphons: a review of studies and solar applications. Renew Sustain Energy Rev. 2016;53:575–93.

    CAS  Google Scholar 

  36. Ji X, Xu J, Zhao Z, Yang W. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces. Exp Therm Fluid Sci. 2013;48:198–212.

    CAS  Google Scholar 

  37. Ji X, Wang Y, Xu J, Huang Y. Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Appl Therm Eng. 2017;117:782–98.

    Google Scholar 

  38. Jiang YY, Shoji M. Thermal convection in a porous toroidal thermosyphon. Int J Heat Mass Transf. 2002;45:3459–70.

    Google Scholar 

  39. Jiang L, Ling J, Jiang L, Tang Y, Li Y, Zhou W, Gao J. Thermal performance of a novel porous crack composite wick heat pipe. Energy Convers Manag. 2014;81:10–8.

    Google Scholar 

  40. Jiang L, Huang Y, Tang Y, Li Y, Zhou W, Jiang L, Gao J. Fabrication and thermal performance of porous crack composite wick flattened heat pipe. Appl Therm Eng. 2014;66:140–7.

    Google Scholar 

  41. Joseph A, Mohan S, Sujith Kumar CS, Mathew A, Thomas S, Vishnu BR, Sivapirakasam SP. An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating. Exp Therm Fluid Sci. 2019;103:37–50.

    CAS  Google Scholar 

  42. Jothi Prakash CG, Prasanth R. Enhanced boiling heat transfer by nano structured surfaces and nanofluids. Renew Sustain Energy Rev. 2018;82:4028–43.

    CAS  Google Scholar 

  43. Ji X, Li H, Xu J, Huang Y. Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices. Exp Therm Fluid Sci. 2017;85:119–31.

    CAS  Google Scholar 

  44. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2020;140:879–90.

    CAS  Google Scholar 

  45. Khan AA, Naeem S, Ellahi R, Sait SM, Vafai K. Dufour and Soret effects on Darcy-Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity. Int J Numer Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-11-2019-0837.

    Article  Google Scholar 

  46. Kareem ZS, Mohd Jaafar MN, Lazim TM, Abdullah S, Abdulwahid AF. Passive heat transfer enhancement review in corrugation. Exp Therm Fluid Sci. 2015;68:22–38.

    Google Scholar 

  47. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    CAS  Google Scholar 

  48. Khodabandeh R, Furberg R. Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop. Int J Therm Sci. 2010;49:1183–92.

    CAS  Google Scholar 

  49. Kim JM, Park SC, Kong BT, Lee HBR, Ahn HS. Effect of porous graphene networks and micropillar arrays on boiling heat transfer performance. Exp Therm Fluid Sci. 2018;93:153–64.

    CAS  Google Scholar 

  50. Kumar PVA, Chandran G, Kamath PM. Heat transfer enhancement of electronic chip cooling using porous medium. In: Proceedings of the 22th national and 11th international ISHMT-ASME heat and mass transfer conference, December 28–31, 2013, IIT Kharagpur, India.

  51. Kumar P, Wangaskar B, Khandekar S, Balani K. Thermal-fluidic transport characteristics of bi-porous wicks for potential loop heat pipe systems. Exp Therm Fluid Sci. 2018;94:355–67.

    CAS  Google Scholar 

  52. Lee CY, Bhuiya MMH, Kim KJ. Pool boiling heat transfer with nano-porous surface. Int J Heat Mass Transf. 2010;53:4274–9.

    Google Scholar 

  53. Lee M, Guan Y, Gupta V, Li LKB. Input-output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data. Phys Rev E. 2020;101:013102.

    CAS  PubMed  Google Scholar 

  54. Li J, Zou Y, Cheng L, Singh R, Akbarzadeh A. Effect of fabricating parameters on properties of sintered porous wicks for loop heat pipe. Powder Technol. 2010;204:241–8.

    CAS  Google Scholar 

  55. Li J, Zou Y, Cheng L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe. Exp Therm Fluid Sci. 2010;34:1403–8.

    CAS  Google Scholar 

  56. Li Y, Yao SC. Porous media modeling of microchannel cooled electronic chips with nonuniform heating. J Thermophys Heat Transf. 2015;29:695–704.

    CAS  Google Scholar 

  57. Li H, Fu S, Li G, Fu T, Zhou R, Tang Y, Tang B, Deng Y, Zhou G. Effect of fabrication parameters on capillary pumping performance of multiscale composite porous wicks for loop heat pipe. Appl Therm Eng. 2018;143:621–9.

    CAS  Google Scholar 

  58. Li JQ, Mou LW, Zhang JY, Zhang YH, Fan LW. Enhanced pool boiling heat transfer during quenching of water on superhydrophilic porous surfaces: effects of the surface wickability. Int J Heat Mass Transf. 2018;125:494–505.

    CAS  Google Scholar 

  59. Li J, Hong F, Xie R, Cheng P. Pore scale simulation of evaporation in a porous wick of a loop heat pipe flat evaporator using Lattice Boltzmann method. Int Commun Heat Mass Transf. 2019;102:22–33.

    Google Scholar 

  60. Ling W, Zhou W, Liu R, Qiu Q, Liu J. Thermal performance of loop heat pipe with porous copper Fiber sintered sheet as wick structure. Appl Therm Eng. 2016;108:251–60.

    CAS  Google Scholar 

  61. Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int J Heat Mass Transf. 2018;124:423–53.

    CAS  Google Scholar 

  62. Mahdi RA, Mohammed HA, Munisamy KM, Saeid NH. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew Sustain Energy Rev. 2015;41:715–34.

    CAS  Google Scholar 

  63. Mahjoob S, Vafai K. A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int J Heat Mass Transf. 2008;51:3701–11.

    Google Scholar 

  64. Mantelli MHBB. Development of porous media thermosyphon technology for vapor recovering in cross-current cooling towers. Appl Therm Eng. 2016;108:398–413.

    Google Scholar 

  65. Meléndez E, Reyes R. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer. Int J Therm Sci. 2006;45:796–803.

    Google Scholar 

  66. Missirlis D, Donnerhack S, Seite O, Albanakis C, Sideridis A, Yakinthos K, Goulas A. Numerical development of a heat transfer and pressure drop porosity model for a heat exchanger for aero engine applications. Appl Therm Eng. 2010;30:1341–50.

    Google Scholar 

  67. Moravej M, Saffarian MR, Li LKB, Doranehgard MH, Xiong Q. Experimental investigation of circular flat-panel collector performance with spiral pipes. J Therm Anal Calorim. 2020;140:1229–36.

    CAS  Google Scholar 

  68. Mori S, Okuyama K. Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media. Int Multiph Flow. 2009;35:946–51.

    CAS  Google Scholar 

  69. Mori S, Mt Aznam S, Okuyama K. Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate. Int J Heat Mass Transf. 2015;80:1–6.

    Google Scholar 

  70. Mori S, Maruoka N, Okuyama K. Critical heat flux enhancement by a two-layer structured honeycomb porous plate in a saturated pool boiling of water. Int J Heat Mass Transf. 2018;118:429–38.

    Google Scholar 

  71. Mori S, Yokomatsu F, Utaka Y. Enhancement of critical heat flux using spherical porous bodies in saturated pool boiling of nanofluid. Appl Therm Eng. 2018;114:219–30.

    Google Scholar 

  72. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09459-4.

    Article  Google Scholar 

  73. Muraoka I, Ramos FM, Vlassov VV. Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. Int J Heat Mass Transf. 2001;44:2287–97.

    CAS  Google Scholar 

  74. Musto M, Bianco N, Rotondo G, Toscano F, Pezzella G. A simplified methodology to simulate a heat exchanger in an aircraft’s oil cooler by means of a porous media model. Appl Therm Eng. 2016;94:836–45.

    Google Scholar 

  75. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020;140:1121–45.

    CAS  Google Scholar 

  76. Oguntala G, Abd-Alhameed R. Performance of convective-radiative porous fin heat sink under the influence of particle deposition and adhesion for thermal enhancement of electronic components. Karbala Int J Mod Sci. 2018;4:297–312.

    Google Scholar 

  77. Oguntala G, Abd-Alhameed R, Ngala M. Transient thermal analysis and optimization of convective-radiative porous fin under the influence of magnetic field for efficient microprocessor cooling. Int J Therm Sci. 2019;145:106019.

    Google Scholar 

  78. Ozgumus T, Mobedi M, Ozkol U, Nakayama A. Thermal dispersion in porous media—A review on the experimental studies for packed beds. Appl Mech Rev. 2013;65:031001–19.

    Google Scholar 

  79. Pastuszko R, Kaniowski R, Wójcik TM. Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer. Appl Therm Eng. 2020;166:114658.

    CAS  Google Scholar 

  80. Paterson L, Schlanger HP. Convection in a porous thermosyphon imbedded in a conducting medium. Int J Heat Mass Transf. 1992;35:877–86.

    CAS  Google Scholar 

  81. Qu J, Sun Q, Wang H, Zhang D, Yuan J. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks. Int J Heat Mass Transf. 2019;137:20–30.

    Google Scholar 

  82. Raju KS, Narasimhan A. Porous medium interconnector effects on the thermohydraulics of near-compact heat exchangers treated as porous media. ASME J Heat Transf. 2007;129:273–81.

    Google Scholar 

  83. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Kumar R, Jilte R. A review on the solar applications of thermosyphons. Math Modell Eng Prob. 2018;5:275–80.

    Google Scholar 

  84. Rashidi S, Esfahani JA, Rashidi A. A review on the applications of porous materials in solar energy systems. Renew Sustain Energy Rev. 2017;73:1198–210.

    CAS  Google Scholar 

  85. Rashidi S, Esfahani JA, Karimi N. Porous materials in building energy technologies—a review of the applications, modelling and experiments. Renew Sustain Energy Rev. 2018;91:229–47.

    Google Scholar 

  86. Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.

    Google Scholar 

  87. Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2020;140:1277–91.

    CAS  Google Scholar 

  88. Rehman T, Ali MH, Janjua MM, Sajjad U, Yan WM. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transf. 2019;135:649–73.

    CAS  Google Scholar 

  89. Ren Q, Meng F, Guo P. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. Int J Heat Mass Transf. 2018;121:1214–28.

    Google Scholar 

  90. Riaz A, Zeeshan A, Bhatti MM, Ellahi R. Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys A. 2020;545:123788.

    CAS  Google Scholar 

  91. Riffat SB, Zhu J. Mathematical model of indirect evaporative cooler using porous ceramic and heat pipe. Appl Therm Eng. 2004;24:457–70.

    CAS  Google Scholar 

  92. Sarafan MJ, Alizadeh R, Fattahi A, Ardalan MV, Karimi N. Heat and mass transfer and thermodynamic analysis of power-law fluid flow in a porous microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09679-8.

    Article  Google Scholar 

  93. Shafieian A, Khiadani M, Nosrati A. Theoretical modelling approaches of heat pipe solar collectors in solar systems: a comprehensive review. Sol Energy. 2019;193:227–43.

    Google Scholar 

  94. Shahid A, Huang H, Bhatti MM, Zhang L, Ellahi R. Theoretical modelling approaches of heat pipe solar collectors in solar systems: a comprehensive review. Mathematics. 2020;8:380.

    Google Scholar 

  95. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev. 2015;49:444–69.

    Google Scholar 

  96. Silk EA, Myre D. Fractal loop heat pipe performance testing with a compressed carbon foam wick structure. Appl Therm Eng. 2013;59:290–7.

    Google Scholar 

  97. Su Y, Davidson JH. A non-dimensional Lattice Boltzmann method for direct and porous medium model simulations of 240-tube bundle heat exchangers in a solar storage tank. Int J Heat Mass Transf. 2015;85:195–205.

    Google Scholar 

  98. Surtaev A, Kuznetsov D, Serdyukov V, Pavlenko A, Kalita V, Komlev D, Ivannikov A, Radyuk A. Structured capillary-porous coatings for enhancement of heat transfer at pool boiling. Appl Therm Eng. 2018;133:532–42.

    CAS  Google Scholar 

  99. Torabi M, Karimi N, Peterson GP, Yee S. Challenges and progress on the modelling of entropy generation in porous media: a review. Int J Heat Mass Transf. 2017;114:31–46.

    Google Scholar 

  100. Vasiliev LL, Rabetsky MI, Grakovich LP, Kulikouski VK, Zhuravlyov AS, Kuzmich M. Loop thermosyphons with porous coating and horizontally disposed evaporator and condenser. In: Joint 19th IHPC and 13th IHPS, Pisa, Italy, June 10–14, 2018.

  101. Wang W, Guo J, Zhang S, Yang J, Ding X, Zhan X. Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach. Comput Chem Eng. 2014;61:30–7.

    Google Scholar 

  102. Wang L, Khan AR, Erkan N, Gong H, Okamoto K. Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling. Int J Heat Mass Transf. 2017;109:454–61.

    Google Scholar 

  103. Wang JX, Li YZ, Zhao ZJ, Mao YF, Li EH, Ning X, Ji XY. Comparative study of the heating surface impact on porous-material-involved spray system for electronic cooling—an experimental approach. Appl Therm Eng. 2018;135:537–48.

    Google Scholar 

  104. Wang YQ, Luo JL, Heng Y, Mo DC, Lyu SS. PTFE-modified porous surface: eliminating boiling hysteresis. Int Commun Heat Mass Transf. 2020;111:104441.

    CAS  Google Scholar 

  105. Wen MY, Jang KJ, Ho CY. The characteristics of boiling heat transfer and pressure drop of R-600a in a circular tube with porous inserts. Appl Therm Eng. 2014;64:348–57.

    CAS  Google Scholar 

  106. Wong KK, Leong KC. Saturated pool boiling enhancement using porous lattice structures produced by Selective Laser Melting. Int J Heat Mass Transf. 2018;121:46–63.

    CAS  Google Scholar 

  107. Wong KK, Leong KC. Nucleate flow boiling enhancement on engineered three-dimensional porous metallic structures in FC-72. Appl Therm Eng. 2019;159:113846.

    CAS  Google Scholar 

  108. Xu P, Li Q, Xuan Y. Enhanced boiling heat transfer on composite porous surface. Int J Heat Mass Transf. 2015;80:107–14.

    Google Scholar 

  109. Xu ZG, Zhao CY. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions. Appl Therm Eng. 2016;100:68–77.

    CAS  Google Scholar 

  110. Yang CY, Liu CF. Effect of coating layer thickness for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp Therm Fluid Sci. 2013;47:40–7.

    Google Scholar 

  111. Yuki K, Suzuki K. Development of functional porous heat sink for cooling high-power electronic devices. Mater Sci. 2012;5:69–74.

    CAS  Google Scholar 

  112. Zeghari K, Louahlia H, Le Masson S. Experimental investigation of flat porous heat pipe for cooling TV box electronic chips. Appl Therm Eng. 2019;163:114267.

    CAS  Google Scholar 

  113. Zhang BJ, Park J, Kim KJ. Augmented boiling heat transfer on the wetting-modified three dimensionally-interconnected alumina nano porous surfaces in aqueous polymeric surfactants. Int J Heat Mass Transf. 2013;63:224–32.

    CAS  Google Scholar 

  114. Zhang BJ, Kim KJ. Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces. Int J Heat Mass Transf. 2014;73:551–61.

    CAS  Google Scholar 

  115. Zhang C, Fan Y, Yu M, Zhang X, Zhao Y. Performance evaluation and analysis of a vertical heat pipe latent thermal energy storage system with fins-copper foam combination. Appl Therm Eng. 2020;165:114541.

    CAS  Google Scholar 

  116. Zhou W, Ling W, Duan L, Hui KS, Hui KN. Development and tests of loop heat pipe with multi-layer metal foams as wick structure. Appl Therm Eng. 2016;94:324–30.

    CAS  Google Scholar 

  117. Zhou G, Li J, Jia Z. Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module. Appl Energy. 2019;239:859–75.

    Google Scholar 

  118. Zing C, Mahjoob S, Vafai K. Analysis of porous filled heat exchangers for electronic cooling. Int J Heat Mass Transf. 2019;133:268–76.

    CAS  Google Scholar 

  119. Zing C, Mahjoob S. Thermal analysis of Multijet impingement through porous media to design a confined heat management system. ASME J Heat Transf. 2019;44:082203–12.

    Google Scholar 

  120. Zong LX, Xia GD, Jia YT, Liu L, Ma DD, Wang J. Flow boiling instability characteristics in microchannels with porous-wall. Int J Heat Mass Transf. 2020;146:118863.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saman Rashidi or Mohammad Hossein Doranehgard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, S., Hormozi, F. & Doranehgard, M.H. Abilities of porous materials for energy saving in advanced thermal systems. J Therm Anal Calorim 143, 2437–2452 (2021). https://doi.org/10.1007/s10973-020-09880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09880-9

Keywords

Navigation