Skip to main content
Log in

Investigation of thermal treatment of hybrid nanoparticles in a domain with different permeabilities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Porous domain filled with nanoliquid was scrutinized in the current article. Magnetic force and permeability were considered as main effective variables, and their influences were involved in momentum. Also, energy equation has a source term related to radiation. Outputs were achieved with CVFEM simulation. As permeability augments, forces against the flow decline. So, stronger eddy appears and temperature gradient augments. Structure of fluid gets affected more significantly by Ha when permeability increases. Nu increases by increments of Da related to greater velocity of nanomaterial, and similar tendency for Nu has been reported with rise of Ra. With intensification of Ha, Nu reduces because of lower distortion of isotherms. The adverse impact of Lorentz force reduces when radiation impact is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shafee A, Bhatti MM, Muhammad T, Kumar R, Nam ND, Babazadeh H. Simulation for convective MHD flow with inclusion of hybrid powders. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09601-2.

    Article  Google Scholar 

  2. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  3. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  4. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liq. 2020;306:112892.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  6. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  7. Fu G, Guo J, Yao X, Summers PA, Widijatmoko SD, Hall P. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. J Clean Prod. 2017;161(10):765–80.

    Google Scholar 

  8. Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.

    Article  Google Scholar 

  9. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. The influence of hybrid nanoparticles transportation on natural convection inside porous domain. Int J Mod Phys C. 2020;31(02):2050026.

    Article  CAS  Google Scholar 

  10. Behnoush Rezaeianjouybari M, Sheikholeslami AS, Babazadeh H. A novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci. 2020;215:115465. https://doi.org/10.1016/j.ces.2019.115465.

    Article  CAS  Google Scholar 

  11. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  12. Sani AL, Ayani M, Ali Behbahani-Nia S, Shafee A, Babazadeh H. Presentation of new approach for energy consumption reduction with use of solar system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09252-y.

    Article  Google Scholar 

  13. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  14. Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.

    Article  Google Scholar 

  15. Mihaiu S, Szilágyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarász J, Pokol G, Zaharescu M. Thermal study on the synthesis of the doped ZnO to be used in TCO films. J Therm Anal Calorim. 2016;124(1):71–80.

    Article  CAS  Google Scholar 

  16. Purusothaman A, Nithyadevi N, Oztop HF, Divya V, Al-Salem K. Three dimensional numerical analysis of natural convection cooling with an array of discrete heaters embedded in nanofluid filled enclosure. Adv Powder Technol. 2016;27(1):268–80.

    Article  CAS  Google Scholar 

  17. Babazadeh H, Taseer Muhammad F, Shakeriaski M Ramzan, Hajizadeh MR. Nanomaterial between two plates which are squeezed with impose magnetic force. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09619-6.

    Article  Google Scholar 

  18. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  19. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Article  Google Scholar 

  20. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  21. Wang P, Li JB, Bai FW, Liu DY, Xu C, Zhao L, Wang ZF. Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver. Energy. 2017;119(15):652–61.

    Article  CAS  Google Scholar 

  22. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Article  Google Scholar 

  23. Lublóy É, Kopecskó K, Balázs GL, Szilágyi IM, Madarász J. Improved fire resistance by using slag cements. J Therm Anal Calorim. 2016;125(1):271–9.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Nematpour Keshteli A, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq. 2020;300:112329. https://doi.org/10.1016/j.molliq.2019.112329.

    Article  CAS  Google Scholar 

  25. Zhang Y, Zhang X, Li M, Liu Z. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat Mass Transf. 2019;55:3117–31.

    Article  Google Scholar 

  26. Qin Y, Liang J, Tan K, Li F. A side by side comparison of the cooling effect of building blocks with retro-reflective and diffuse-reflective walls. Sol Energy. 2016;133:172–9.

    Article  Google Scholar 

  27. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  28. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  CAS  Google Scholar 

  29. Aly AM. Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects. J Taiwan Inst Chem Eng. 2017;70:88–103.

    Article  CAS  Google Scholar 

  30. Hussein AK, Bakier MAY, Hamida MBB, Sivasankaran S. Magneto-hydrodynamic natural convection in an inclined T-shaped enclosure for different nanofluids and subjected to a uniform heat source. Alex Eng J. 2016;55(3):2157–69.

    Article  Google Scholar 

  31. Ji Q, Guo J-F. Oil price volatility and oil-related events: an Internet concern study perspective. Appl Energy. 2015;137(1):256–64.

    Article  Google Scholar 

  32. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(Supplement C):218–24.

    Article  Google Scholar 

  33. Gao W, Farahani MR. Generalization bounds and uniform bounds for multi-dividing ontology algorithms with convex ontology loss function. Comput J. 2017;60(9):1289–99.

    Google Scholar 

  34. Nong H, Hajizadeh MR, Babazadeh H. Numerical modeling of paraffin melting expedition with considering nanoparticles through wavy duct. J Mol Liq. 2020;305:112807.

    Article  CAS  Google Scholar 

  35. Ahmad Shafee M, Sheikholeslami M Jafaryar, Babazadeh H. Utilizing copper oxide nanoparticles for expedition of solidification within a storage system. J Mol Liq. 2020;302:112371. https://doi.org/10.1016/j.molliq.2019.112371.

    Article  CAS  Google Scholar 

  36. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Sol Energy. 2017;157(Supplement C):1047–55.

    Article  Google Scholar 

  37. Gao W, Guo Y, Wang KY. Ontology algorithm using singular value decomposition and applied in multidisciplinary. Clust Comput J Netw Softw Tools Appl. 2016;19(4):2201–10.

    Google Scholar 

  38. GangWang FW, Shen F, Jiang T, Chen Z, Peng H. Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renew Energy. 2020;146:2351–61.

    Article  Google Scholar 

  39. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R-u. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  40. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Article  Google Scholar 

  41. Gao W, Wang WF. Second atom-bond connectivity index of special chemical molecular structures. J Chem. 2014. https://doi.org/10.1155/2014/906254.

    Article  Google Scholar 

  42. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Alumina nanoparticle flow within a channel with permeable walls. Int J Mod Phys C. 2020;31(02):2050026.

    Article  CAS  Google Scholar 

  43. Abdallaoui ME, Hasnaoui M, Amahmid A. Numerical simulation of natural convection between a decentered triangular heating cylinder and a square outer cylinder filled with a pure fluid or a nanofluid using the lattice Boltzmann method. Powder Technol. 2015;277:193–205.

    Article  CAS  Google Scholar 

  44. Boualit A, Zeraibi N, Chergui T, Lebbi M, Boutina L, Laouar S. Natural convection investigation in square cavity filled with nanofluid using dispersion model. Int J Hydrog Energy. 2017;42(13):8611–23.

    Article  CAS  Google Scholar 

  45. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Article  CAS  Google Scholar 

  46. Dongmin Yu, Zhu H, Han W, Holburn D. Dynamic multi agent-based management and load frequency control of PV/fuel cell/wind turbine/CHP in autonomous microgrid system. Energy. 2019;173(15):554–68.

    Google Scholar 

  47. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  48. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures. Comput Math Methods Med. 2015. https://doi.org/10.1155/2015/418106.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  50. Trang TNQ, Tu LTN, Man TV, Mathesh M, Thu VTH, Nam ND. A high-efficiency photoelectrochemistry of Cu2O/TiO2 nanotubes for hydrogen evolution under sunlight. Compos B Eng. 2019;174:106969.

    Article  CAS  Google Scholar 

  51. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Article  Google Scholar 

  52. Shafee A, Firouzi A, Nam ND, Babazadeh H. Elliptic cavity filled with hybrid nanomaterial under consideration of magnetic field. Int J Mod Phys C. 2020. https://doi.org/10.1142/S0129183120500801.

    Article  Google Scholar 

  53. Xiaojie Ma M, Sheikholeslami M Jafaryar, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2020;245:118888.

    Article  CAS  Google Scholar 

  54. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Article  Google Scholar 

  55. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  56. Kahwaji G, Ali OM. Numerical investigation of natural convection heat transfer from square cylinder in an enclosed enclosure filled with nanofluids. Int J Recent Adv Mech Eng. 2015;4(4):1–17.

    Article  Google Scholar 

  57. Purusothaman A. Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications. Adv Powder Technol. 2018;29(4):996–1004.

    Article  CAS  Google Scholar 

  58. Sheremet MA, Pop I. Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model. Comput Fluids. 2015;118:182–90.

    Article  CAS  Google Scholar 

  59. Manh TD, Nam ND, Jacob K, Hajizadeh A, Babazadeh H, Mohammed Mahjoub I, Tlili Z Li. Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123937.

    Article  Google Scholar 

  60. Gao W, Wang WF, Jamil MK, Farahani MR. Electron energy studying of molecular structures via forgotten topological index computation. J Chem. 2016. https://doi.org/10.1155/2016/1053183.

    Article  Google Scholar 

  61. Vu NSH, Hien PV, Mathesh M, Thu VTH, Nam ND. Titania nanoparticles impregnated with complex organic molecules’ adsorption on steel surface in ethanol fuel blend. ACS Omega. 2019;4:146–58.

    Article  CAS  Google Scholar 

  62. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  63. Babazadeh H, Zeeshan A, Jacob K, Hajizadeh A, Bhatti MM. Numerical modelling for nanoparticles thermal migration with effects of shape of particles and magnetic field inside a porous enclosure. Iran J Sci Technol Trans Mech Eng. 2020. https://doi.org/10.1007/s40997-020-00354-9.

    Article  Google Scholar 

  64. Cao L, Chaoyu T, Pengfei H, Liu S. Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Appl Therm Eng. 2019;150(5):552–63.

    Article  Google Scholar 

  65. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  66. Le TNT, Ton NQT, Tran VM, Nam ND, Vu THT. TiO2 nanotubes with different Ag loading to enhance visible-light photocatalytic activity. J Nanomater. 2017;2017:1–7.

    Article  CAS  Google Scholar 

  67. Babazadeh H, Shah Z, Ullah I, Kumam P, Shafee A. Analyze of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09416-1.

    Article  Google Scholar 

  68. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  69. Gao W, Liang L, Xu TW, Gan JH. Topics on data transmission problem in software definition network. Open Phys. 2017;15:501–8.

    Article  Google Scholar 

  70. Vijaybabu TR, Dhinakaran S. MHD natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3–H2O nanofluid: an LBM study. Int J Mech Sci. 2019;153–154:500–16.

    Article  Google Scholar 

  71. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Xuan Vuong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, H., Salahshoor, Z., Yadav, D. et al. Investigation of thermal treatment of hybrid nanoparticles in a domain with different permeabilities. J Therm Anal Calorim 145, 2787–2794 (2021). https://doi.org/10.1007/s10973-020-09824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09824-3

Keywords

Navigation