Skip to main content
Log in

Rosmarinic acid-conjugated hemocyanins: synthesis and stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two oxygen-transporting proteins known for their immunostimulating and anticancer properties, namely hemocyanin from Helix lucorum (HlH) and hemocyanin from Rapana thomasiana (RtH), have been modified for the first time with rosmarinic acid (RA). We prepared two conjugates RA–HlH and RA–RtH containing 47 and 50 rosmarinic acid residues, respectively. The conformational analysis showed that the secondary structure of RA–HlH is less ordered than that of the native HlH, and for the modified protein we observed a decrease in α-helical structures in the favor of random coils, unordered structures, and aggregates. Calorimetric studies showed an increase in the thermal stability of RA–HlH in comparison with the native HlH which is in agreement with the observed structural changes. On the other hand, the conformation of RA–RtH was very similar to that of the native RtH although some rearrangements in the molecule were found. Interestingly, the modification of RtH with RA resulted in a decrease in its thermal stability. A 48-h in vitro experiment showed that tested in concentrations up to 0.7 mg mL−1 the two modified hemocyanins did not inhibit the cell growth of human fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swamy MK, Sinniah UR, Ghasemzadeh A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol. 2018;102(18):7775–93.

    Article  CAS  Google Scholar 

  2. Li G-S, Jiang W-L, Tian J-W, Qu G-W, Zhu H-B, Fu F-H. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine. 2010;17:282–8.

    Article  CAS  Google Scholar 

  3. Ma Z-J, Hu Y, Wang Y-J, Yang Y, Li X-B, Shi A-C, Xu J-W, Lu Y-B, Lu L, Wang X-X. Proteomics analysis demonstrating rosmarinic acid suppresses cell growth by blocking the glycolytic pathway in human HepG2 cells. Biomed Pharmacother. 2018;105:334–49.

    Article  CAS  Google Scholar 

  4. Moon D-O, Kim M-O, Lee J-D, Choi YH, Kim G-Y. Rosmarinic acid sensitizes cell death through suppression of TNF-a-induced NF-jB activation and ROS generation in human leukemia U937 cells. Cancer Lett. 2010;288:183–91.

    Article  CAS  Google Scholar 

  5. Berdowska I, Zielinski B, Fecka I, Kulbacka J, Saczko J, Gamian A. Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem. 2013;141:1313–21.

    Article  CAS  Google Scholar 

  6. Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192:119–25.

    Article  CAS  Google Scholar 

  7. Parisi OI, Malivindi R, Amone F, Ruffo M, Malanchin R, Carlomagno F, Piangiolino C Nobile, Pezzi V, Scrivano L, Puoci F. Safety and efficacy of dextran-rosmarinic acid conjugates as innovative polymeric antioxidants in skin whitening: what is the evidence? Cosmetics. 2017;4(3):28.

    Article  Google Scholar 

  8. Ge L, Zhu M, Li X, Xu Y, Ma X, Shi R, Li D, Mu C. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocoll. 2018;83:308–16.

    Article  CAS  Google Scholar 

  9. Ali M, Keppler JK, Coenye T, Schwarz K. Covalent whey protein–rosmarinic acid interactions: a comparison of alkaline and enzymatic modifications on physicochemical, antioxidative, and antibacterial properties. J Food Sci. 2018;83(8):2092–100.

    Article  CAS  Google Scholar 

  10. Coates CJ, Decker H. Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci. 2017;74(2):293–317.

    Article  CAS  Google Scholar 

  11. Gatsogiannis C, Hofnagel O, Markl J, Raunser S. Structure of mega-hemocyanin reveals protein origami in snails. Structure. 2015;23:93–103.

    Article  CAS  Google Scholar 

  12. Becker MI, Arancibia S, Salazar F, Del Campo M, De Ioannes A. Mollusk hemocyanins as natural immunostimulants in biomedical applications. In: Huynh G, Duc T, editors. Inmmune response activation. London: InTechOpen; 2014.

    Google Scholar 

  13. Nahas MR, Rosenblatt J, Lazarus HM, Avigan D. Anti-cancer vaccine therapy for hematologic malignancies: an evolving era. Blood Rev. 2018;32(4):312–25.

    Article  CAS  Google Scholar 

  14. Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J, Dodwell D, Parkerh J, Mayordomo J, Tresi A, Murray JL, Ibrahim NK, the Theratope® Study Group. Phase III multicenter clinical trial of the sialyl-TN (STn)-Keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16(8):1092–100.

    Article  CAS  Google Scholar 

  15. Román JJM, Del Campo M, Villar J, Paolini F, Curzio G, Venuti A, Jara L, Ferreira J, Murgas P, Lladser A, Manubens A, Becker MI. Immunotherapeutic potential of mollusk hemocyanins in combination with human vaccine adjuvants in murine models of oral cancer. J Immunol Res. 2019;2019:Article 7076942.

    Google Scholar 

  16. Liao J, Pan B, Liao G, Zhao Q, Gao Y, Chai X, Zhuo X, Wu Q, Jiao B, Pan W, Guo Z. Synthesis and immunological studies of β-1,2-mannan-peptide conjugates as antifungal vaccines. Eur J Med Chem. 2019;173:250–60.

    Article  CAS  Google Scholar 

  17. Shen X, Orson FM, Kosten TR. Anti-addiction vaccines. Med Rep. 2011;3:20.

    Google Scholar 

  18. Guncheva M, Paunova K, Ossowicz P, Rozwadowski Z, Janus E, Idakieva K, Todinova S, Raynova Y, Uzunova V, Apostolova S, Tzoneva R, Yancheva D. Modification of Rapana thomasiana hemocyanin with choline amino acid salts significantly enhances its antiproliferative activity against MCF-7 human breast cancer cells. RSC Adv. 2015;5:63345–54.

    Article  CAS  Google Scholar 

  19. Guncheva M, Todinova S, Uzunova V, Idakieva K, Raynova Y, Ossowicz P, Janus E, Tzoneva R. Destabilization of β-hemocyanin from Helix pomatia in presence of choline amino acids results in improved cell specificity and cytotoxicity against human breast cancer. ChemistrySelect. 2019;4:11460–6.

    Article  CAS  Google Scholar 

  20. Guncheva M, Idakieva K, Todinova S, Stoyanova E, Yancheva D. Folate-conjugated Helix lucorum hemocyanin—preparation, stability, and cytotoxicity. Z Naturforsch C J Biosci. 2020;75(1–2):23–30.

    Article  CAS  Google Scholar 

  21. Guncheva M, Idakieva K, Todinova S, Stoyanova E, Yancheva D. Biophysical properties and cytotoxicity of feruloylated Helix lucorum hemocyanin. Acta Chim Slov. 2020;1:1. https://doi.org/10.17344/acsi.2019.5400.

    Article  Google Scholar 

  22. Velkova L, Dimitrov I, Schwarz H, Stevanovic S, Voelter W, Salvato B, Dolashka-Angelova P. Structure of hemocyanin from garden snail Helix lucorum. Comp Biochem Physiol B. 2010;157:16–25.

    Article  Google Scholar 

  23. Idakieva K, Parvanova K, Todinova S. Differential scanning calorimetry of the irreversible denaturation of Rapana thomasiana (marine snail, Gastropod) hemocyanin. Biochim Biophys Acta. 2005;1748:50–6.

    Article  CAS  Google Scholar 

  24. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  25. Lai JY, Ma DH. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics. Int J Nanomed. 2013;8:4157–68.

    Article  Google Scholar 

  26. Guncheva M, Todinova S, Yancheva D, Raynova Y, Idakieva K. Thermal stability and secondary structure of feruloylated Rapana thomasiana hemocyanin. J Therm Anal Calorim. 2019;138:2715–20.

    Article  CAS  Google Scholar 

  27. Shnyrov VL, Mateo PL. Thermal transitions in the purple membrane from Halobacterium halobium. FEBS. 1993;324(2):237–40.

    Article  CAS  Google Scholar 

  28. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39(8):549–59.

    Article  CAS  Google Scholar 

  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Bulgarian National Science Fund (Project: ДКOCT 01/27) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Guncheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guncheva, M., Todinova, S., Yancheva, D. et al. Rosmarinic acid-conjugated hemocyanins: synthesis and stability. J Therm Anal Calorim 142, 1903–1909 (2020). https://doi.org/10.1007/s10973-020-09738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09738-0

Keywords

Navigation