Skip to main content
Log in

Non-axisymmetric three-dimensional stagnation-point flow and heat transfer under a jet impingement boiling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-axisymmetric three-dimensional flow and heat transfer in the stagnation-point region of a planar jet impingement boiling on a flat surface has been investigated by using similarity solution approach, considering additional diffusivity terms in momentum and energy equations as a result of bubble-induced mixing in flow. The free jet stream along z direction impinges on the surface and produces a flow with different velocity components. This situation may happen if the flow pattern on the plate is bounded from both sides in one of the directions, because of any physical limitation or due to conditions of the surface such as moving plates or stretching sheets with different values of stretching velocities in the x and y directions. The governing equations have been transformed into ordinary differential equations by introducing appropriate similarity variables, and an exact solution has been obtained for three-dimensional boiling problem for the first time. The similarity variables have been presented based on non-axisymmetric three-dimensional and additional diffusivity effects. The bubble-induced diffusion due to bubble formation, growth, departure and collapse causes an enhancement in heat transfer rate from the surface to the bulk flow. The total heat flux transferred from the surface to the flow has been estimated as summation of the single-phase heat transfer due to forced convection and the nucleate boiling heat flux due to bubble-induced diffusion. The effects of the velocity components ratio and the ratio between the maximum total diffusivity to the molecular diffusivity on the flow field and heat transfer characteristics have been obtained and discussed and illustrated graphically. A comparison of the predicted heat flux has been made with previously published experimental data. As expected, the average deviation values show relatively more accurate results for the three-dimensional simulation than the two-dimensional one because of being closer to the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J kg−1 °C−1)

C :

Velocity gradient

f :

Dimensionless function used in Eq. (10)

g :

Dimensionless function used in Eq. (10)

h :

Heat transfer coefficient (W m−2 °C−1)

Ja:

Jacob number

k :

Thermal conductivity (W m−1 °C−1)

M :

Decay function of the thermal additional diffusivity, defined in Eq. (15)

N :

Decay function of the momentum additional diffusivity, defined in Eq. (14)

p :

Pressure (N m−2)

Pr:

Prandtl number

\( \Pr_{\text{t}} \) :

Bubble-induced Prandtl number

\( q^{\prime \prime } \) :

Heat flux (W m−2)

\( \text{Re}_{\text{j}} \) :

Jet Reynolds number

T :

Temperature (°C or K)

\( \Delta T \) :

Temperature difference (°C or K)

u :

Velocity component in x direction (m s−1)

v :

Velocity component y direction (m s−1)

\( V_{\text{j}} \) :

Jet velocity

w :

Velocity component in z direction (m s−1)

\( w_{\text{j}} \) :

Jet width (m)

We:

Weber number

\( \alpha \) :

Molecular thermal diffusivity (m2 s−1)

\( \nu \) :

Molecular kinematic diffusivity (m2 s−1)

\( \mu \) :

Molecular dynamic diffusivity (kg ms−1)

\( \rho \) :

Density

\( \lambda \) :

Velocity components ratio

\( \varepsilon \) :

Additional diffusivity (m2 s−1)

\( \varepsilon^{ + } \) :

Dimensionless total diffusivity

\( \eta \) :

Dimensionless distance from surface

\( \theta \) :

Dimensionless temperature

axi:

Axisymmetric

b:

Bubble

cr:

Critical value

FDB:

Fully developed boiling

j:

Jet related value

h:

Thermal energy

l:

Liquid

m:

Momentum

max:

Maximum value

model:

Model-predicted value

nb:

Nucleate boiling

s:

Surface (wall)

sp:

Single phase

sub:

Sub-cooled

sup:

Superheat

v:

Vapor

\( \upvarepsilon \) :

Related to the bubble-induced diffusivity

w:

Related to the jet width

2-D:

Two-dimensional value

3-D:

Three-dimensional value

\( \infty \) :

Free stream related value

′:

First derivative

″:

Second derivative

References

  1. Lienhard J. Liquid jet impingement. Ann Rev Heat Transf. 1995;6(6):199–270.

    Article  CAS  Google Scholar 

  2. Wolf DH, Viskanta R, Incropera FP. Turbulence dissipation in a free-surface jet of water and its effect on local impingement heat transfer from a heated surface: part 2—local heat transfer. J Heat Transf. 1995;117(1):95–103. https://doi.org/10.1115/1.2822330.

    Article  CAS  Google Scholar 

  3. Zuckerman N, Lior N. Impingement heat transfer: correlations and numerical modeling. J Heat Transf. 2005;127(5):544–52. https://doi.org/10.1115/1.1861921.

    Article  Google Scholar 

  4. Abbasi AS, Rahimi AB, Niazmand H. Exact solution of three-dimensional unsteady stagnation flow on a heated plate. J Thermophys Heat Transf. 2011;25:55–8.

    Article  Google Scholar 

  5. Abbassi AS, Rahimi AB. Investigation of two-dimensional unsteady stagnation-point flow and heat transfer impinging on an accelerated flat plate. J Heat Transf. 2012;134(6):064501. https://doi.org/10.1115/1.4005742.

    Article  Google Scholar 

  6. Wang B, Guo X, Xie Q, Wang Z, Wang G. Heat transfer characteristic research during jet impinging on top/bottom hot steel plate. Int J Heat Mass Transf. 2016;101:844–51.

    Article  CAS  Google Scholar 

  7. Hadipour A, Rajabi Zargarabadi M, Dehghan M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09232-2.

    Article  Google Scholar 

  8. Matheswaran MM, Arjunan TV, Somasundaram D. Analytical investigation of exergetic performance on jet impingement solar air heater with multiple arc protrusion obstacles. J Therm Anal Calorim. 2019;137(1):253–66. https://doi.org/10.1007/s10973-018-7926-z.

    Article  CAS  Google Scholar 

  9. Miyasaka Y, Inada S. The effect of pure forced convection on the boiling heat transfer between a two-dimensional subcooled water jet and a heated surface. J Chem Eng Jpn. 1980;13(1):22–8. https://doi.org/10.1252/jcej.13.22.

    Article  CAS  Google Scholar 

  10. Wolf D, Incropera F, Viskanta R. Jet impingement boiling. Adv Heat Transf. 1993;23:1–132.

    Article  CAS  Google Scholar 

  11. Wolf D, Incropera F, Viskanta R. Local jet impingement boiling heat transfer. Int J Heat Mass Transf. 1996;39(7):1395–406.

    Article  CAS  Google Scholar 

  12. Hall DE, Incropera FP, Viskanta R. Jet impingement boiling from a circular free-surface jet during quenching: part 2—two-phase jet. J Heat Transf. 2001;123(5):911–7.

    Article  CAS  Google Scholar 

  13. Robidou H, Auracher H, Gardin P, Lebouche M, Bogdanić L. Local heat transfer from a hot plate to a water jet. Heat Mass Transf. 2003;39(10):861–7.

    Article  CAS  Google Scholar 

  14. Karwa N, Gambaryan-Roisman T, Stephan P, Tropea C. Experimental investigation of circular free-surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp Thermal Fluid Sci. 2011;35(7):1435–43.

    Article  CAS  Google Scholar 

  15. Li Y-Y, Liu Z-H, Wang Q. Experimental study on critical heat flux of steady boiling for high-velocity slot jet impinging on the stagnation zone. Int J Heat Mass Transf. 2014;70:1–9.

    Article  Google Scholar 

  16. Modak M, Nirgude V, Sharma AK, Sahu SK. Experimental study on heat transfer characteristics of circular jet impingement boiling on the variety of structured copper surfaces in stagnation zone. Int J Heat Mass Transf. 2016;50053:V005T15A48. https://doi.org/10.1115/icone24-60682.

    Article  Google Scholar 

  17. Karimi Kerdabadi J, Haghanimanesh M, Karimipour A, Toghraie D, Tlili I. The experimental/numerical investigation of variations in strip speed, water shower pattern and water temperature on high-temperature strip cooling rate in hot strip mill. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09052-4.

    Article  Google Scholar 

  18. Shafee A, Rezaeianjouybari B, Sheikholeslami M, Allahyari M, Babazadeh H. Boiling process with incorporating nanoparticles through a flattened channel using experimental approach. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09327-1.

    Article  Google Scholar 

  19. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.043.

    Article  CAS  Google Scholar 

  20. Mohaghegh MR, Rahimi AB. Modeling of nucleate boiling heat transfer of a stagnation-point flow impinging on a hot surface. Thermal Sci. 2019;23(2 Part A):695–706.

    Google Scholar 

  21. Mohaghegh MR, Rahimi AB. Single- and two-phase water jet impingement heat transfer on a hot moving surface. J Therm Anal Calorim. 2019;137(4):1401–11. https://doi.org/10.1007/s10973-019-08072-4.

    Article  CAS  Google Scholar 

  22. Copeland RJ. Boiling heat transfer to a water jet impinging on a flat surface. Ph.D. Thesis. Southern Methodist University, Dallasm, TX; 1970.

  23. Ishigai S, Nakanishi S, Ochi T, editors. Boiling heat transfer for a plane water jet impinging on a hot surface. In: Proceedings of the 6th international heat transfer conference: Washington, DC: Hemisphere Publishing Corp; 1978.

  24. Miyasaka Y, Inada S, Owase Y. Critical heat flux and subcooled nucleate boiling in transient region between a two-dimensional water jet and a heated surface. J Chem Eng Jpn. 1980;13(1):29–35. https://doi.org/10.1252/jcej.13.29.

    Article  CAS  Google Scholar 

  25. Zumbrunnen DA. Convective heat and mass transfer in the stagnation region of a laminar planar jet impinging on a moving surface. J Heat Transf. 1991;113(3):563–70. https://doi.org/10.1115/1.2910603.

    Article  CAS  Google Scholar 

  26. Mohaghegh MR, Rahimi AB. Three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet. J Heat Transf. 2016;138(11):112001–12. https://doi.org/10.1115/1.4033614.

    Article  CAS  Google Scholar 

  27. Hsiao K-L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042.

    Article  Google Scholar 

  28. Narumanchi S, Troshko A, Bharathan D, Hassani V. Numerical simulations of nucleate boiling in impinging jets: applications in power electronics cooling. Int J Heat Mass Transf. 2008;51(1):1–12.

    Article  CAS  Google Scholar 

  29. Paul S, Udo F. Simulation of the impinging liquid jet cooling process of a flat plate. Int J Numer Methods Heat Fluid Flow. 2015;25(1):153–70. https://doi.org/10.1108/HFF-04-2013-0151.

    Article  Google Scholar 

  30. Shademan M. CFD simulation of impinging jet flows and boiling heat transfer. Ph.D. Thesis. University of Windsor, Canada; 2015.

  31. Ramezanzadeh H, Ramiar A, Yousefifard M, Ghasemian M. Numerical analysis of sinusoidal and step pulse velocity effects on an impinging jet quenching process. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08828-y.

    Article  Google Scholar 

  32. Dhir VK, Abarajith HS, Li D. Bubble dynamics and heat transfer during pool and flow boiling. Heat Transf Eng. 2007;28(7):608–24. https://doi.org/10.1080/01457630701266421.

    Article  CAS  Google Scholar 

  33. Gunther FC. Photographic study of surface-boiling heat transfer to water with forced convection. Trans ASME. 1951;73(2):115–23.

    Google Scholar 

  34. Timm W, Weinzierl K, Leipertz A. Heat transfer in subcooled jet impingement boiling at high wall temperatures. Int J Heat Mass Transf. 2003;46(8):1385–93.

    Article  CAS  Google Scholar 

  35. Omar A, Hamed M, Shoukri M. Modeling of nucleate boiling heat transfer under an impinging free jet. Int J Heat Mass Transf. 2009;52(23):5557–66.

    Article  CAS  Google Scholar 

  36. Ja’fari M, Rahimi AB. Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving plate with time-dependent axial velocity and uniform transpiration. Sci Iran. 2013;20(1):152–61. https://doi.org/10.1016/j.scient.2012.12.010.

    Article  CAS  Google Scholar 

  37. Tzirtzilakis EE, Kafoussias NG. Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. J Heat Transf. 2009;132(1):011702–8. https://doi.org/10.1115/1.3194765.

    Article  CAS  Google Scholar 

  38. White FM. Viscous fluid flow. 3rd ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  39. Collier JG, Thome JR. Convective boiling and condensation. 3rd ed. Oxford: Clarendon Press; 1994.

    Google Scholar 

  40. Hsu YY. On the size range of active nucleation cavities on a heating surface. J Heat Transf. 1962;84(3):207–13. https://doi.org/10.1115/1.3684339.

    Article  CAS  Google Scholar 

  41. Inada S, Miyasaka Y, Izumi R. A study on the laminar-flow heat transfer between a two-dimensional water jet and a flat surface with constant heat flux. Bull JSME. 1981;24(196):1803–10. https://doi.org/10.1299/jsme1958.24.1803.

    Article  CAS  Google Scholar 

  42. Omar AM. Experimental study and modeling of nucleate boiling during free planar liquid jet impingement. Hamilton, ON: McMaster University; 2010.

    Google Scholar 

  43. Basu N, Warrier GR, Dhir VK. Wall heat flux partitioning during subcooled flow boiling: part II—model validation. J Heat Transf. 2005;127(2):141–8. https://doi.org/10.1115/1.1842785.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hereby, the financial support of Ferdowsi University of Mashhad under contract No. 2/47377 is acknowledged during accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar B. Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohaghegh, M.R., Rahimi, A.B. & Mahmud, S. Non-axisymmetric three-dimensional stagnation-point flow and heat transfer under a jet impingement boiling. J Therm Anal Calorim 145, 211–224 (2021). https://doi.org/10.1007/s10973-020-09694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09694-9

Keywords

Navigation