Skip to main content
Log in

Experimental investigation and optimization of loop heat pipe performance with nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High heat generation from electronic devices needs to cool down properly to prevent overheating. Loop heat pipe (LHP) is one of the excellent cooling devices for high heat generation of electronic devices. Nanofluid is a working fluid which has nanoparticle dispersed in based fluid. Nanofluid is proven to have better thermal performance compared with conventional fluids. In this paper, we investigate on the thermal performance of loop heat pipes using different types of nanofluids. The desired nanofluids used in this study are diamond nanofluid, aluminium oxide (Al2O3) nanofluid and silica oxide nanofluid (SiO2) with 0–3% of mass concentrations. The results showed that as the mass concentration of nanofluids increased, the thermal resistance for diamond nanofluid and Al2O3 nanofluid decreased, but SiO2 nanofluid results show the opposite trend of thermal resistance with increasing mass concentration. The lowest thermal resistance is 3.0872 °C W−1, 3.1465 °C W−1 and 3.2816 °C W−1 for diamond, Al2O3 and SiO2, respectively. Moreover, all types of nanofluids show better heat transfer performance compared with water. Diamond nanofluid also had higher heat capacity than Al2O3 nanofluid as it had a lower vapour line temperature reading. Optimization result also shows that diamond nanofluid has better thermal enhancement than Al2O3 with 1.19% of mass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9:
Fig. 10
Fig. 11
Fig. 12:
Fig. 13

Similar content being viewed by others

Abbreviations

Q :

Heat input, W

R T :

Total thermal resistance, °C W1

R B :

Base thermal resistance, °C W1

R E :

Evaporator thermal resistance, °C W1

R V :

Vapour line thermal resistance, °C W1

R C :

Convective thermal resistance, °C W1

R L :

Liquid line thermal resistance, °C W1

T :

Temperature, °C

T A :

Ambient temperature, °C

T B :

Base plate temperature, °C

T C :

Condenser temperature, °C

T E :

Evaporator temperature, °C

T V :

Vapour line temperature, °C

T L :

Liquid line temperature, °C

W nano :

Mass of nanoparticle, kg

W base :

Mass of base fluid, kg

References

  1. Lu X, et al. Thermal analysis of loop heat pipe used for high-power LED. Thermochim Acta. 2009;493(1–2):25–9.

    Article  CAS  Google Scholar 

  2. Wang D, et al. Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Exp Therm Fluid Sci. 2014;57:157–64.

    Article  Google Scholar 

  3. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  4. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  5. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  6. Rashidi S, et al. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  7. Tharayil T, et al. Thermal performance of miniature loop heat pipe with graphene–water nanofluid. Int J Heat Mass Transf. 2016;93:957–68.

    Article  CAS  Google Scholar 

  8. Heris SZ, Esfahany MN, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28(2):203–10.

    Article  Google Scholar 

  9. Lee Y. The use of nanofluids in domestic water heat exchanger. J Adv Res Appl Mech. 2014;3(1):9–24.

    Google Scholar 

  10. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  11. Ma H, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl Phys Lett. 2006;88(14):143116.

    Article  Google Scholar 

  12. Moraveji MK, Razvarz S. Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. Int Commun Heat Mass Transf. 2012;39(9):1444–8.

    Article  Google Scholar 

  13. Bezerra MA, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77.

    Article  CAS  Google Scholar 

  14. Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.

    Article  Google Scholar 

  15. Rostamian H, Lotfollahi MN. New functionality for energy parameter of Redlich–Kwong equation of state for density calculation of pure carbon dioxide and ethane in liquid, vapor and supercritical phases. Period Polytech Chem Eng. 2016;60(2):93–7.

    CAS  Google Scholar 

  16. Taylor J. Introduction to error analysis, the study of uncertainties in physical measurements. Mill Valley: University Science Books; 1997.

    Google Scholar 

  17. Gunnasegaran P, et al. Optimization of SiO2 nanoparticle mass concentration and heat input on a loop heat pipe. Case Stud Therm Eng. 2015;6:238–50.

    Article  Google Scholar 

  18. Gunnasegaran P, Abdullah MZ, Yusoff MZ. Heat transfer in a loop heat pipe using Fe2NiO4–H2O nanofluid. In: MATEC web of conferences. EDP Sciences; 2017.

  19. Aun TS, Abdullah MZ, Gunnasegaran P. Influence of low concentration of diamond water nanofluid in loop heat pipe. Int J Heat Technol. 2017;35(3):539–48.

    Article  Google Scholar 

  20. Shukla K, et al. Thermal performance of cylindrical heat pipe using nanofluids. J Thermophys Heat Transf. 2010;24(4):796–802.

    Article  CAS  Google Scholar 

  21. Yu W, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  22. Chon CH, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):153107.

    Article  Google Scholar 

  23. Septiadi W, et al. Characteristics of screen mesh wick heat pipe with nano-fluid as passive cooling system. Atom Indones. 2013;39(1):24–31.

    Article  Google Scholar 

  24. Keblinski P, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  25. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11(3):512–23.

    Article  CAS  Google Scholar 

  26. Montgomery DC. Design and analysis of experiments. New York: Wiley; 2017.

    Google Scholar 

  27. Gunabal S, Alagappan N. Performance of working fluids in a waste heat recovery system using heat pipes. Int J Eng Adv Technol. 2019;8:1–6.

    Google Scholar 

  28. Elnaggar MHA, Abdullah MZ, Mujeebu MA. Experimental investigation and optimization of heat input and coolant velocity of finned twin U-shaped heat pipe for CPU cooling. Exp Tech. 2013;37(6):34–40.

    Article  Google Scholar 

  29. Kourkah FF, Mahd DK, Mirzaee M. Optimization of double pipe heat exchanger with response surface methodology using nanofluid and twisted tape. Fluid Mech. 2017;3(3):20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prem A./L. Gunnasegaran or Nor Azwadi Che Sidik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harun, M.A.B., Gunnasegaran, P.A., Sidik, N.A.C. et al. Experimental investigation and optimization of loop heat pipe performance with nanofluids. J Therm Anal Calorim 144, 1435–1449 (2021). https://doi.org/10.1007/s10973-020-09641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09641-8

Keywords

Navigation