Skip to main content
Log in

Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present investigation is the comparative energy and exergy analysis of a proposed gas turbine (PGT) cycle with a simple gas turbine (SGT) cycle while maintaining the same mass flow rate of fuel in both cycles. In the PGT cycle, a bypass valve (BVP) connects the topping regenerative gas turbine cycle with the air bottoming cycle. It is found that with increase in pressure ratio (rp), turbine inlet temperature (TIT) of topping cycle of PGT cycle decreases continuously in the absence of the BPV, whereas in the PGT cycle with the BVP, the net output and thermal efficiency increased by 20% at rp = 12 and TIT = 900 K to 81% at rp = 4 and TIT = 1000 K. SFC of PGT cycle is reduced by 43–45% for TIT = 900 K and 1000 K, respectively, at rp = 4 as compared to SGT cycle. Also the total exergy destruction and exergetic efficiency of SGT cycle are 62.1–55% less and 26.5–49.7% more, respectively, in contrast to PGT cycle. In addition to this, the exhaust gas exergy losses decrease by 75.5% at the maximum output as compared to the SGT cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(W\) :

Work output

T :

Temperature (K)

\(\varepsilon\) :

Heat exchanger effectiveness

\(r_{\text{p}}\) :

Pressure ratio

BPV:

Bypass valve

SFC:

Specific fuel consumption

PGT:

Proposed gas turbine

TIT:

Topping gas turbine inlet temperature (K)

\(\dot{Q}\) :

Heat supply rate

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(\eta\) :

Thermal efficiency

LCV:

Lower calorific value of fuel

\(PGT\) :

Proposed gas turbine

HE:

Heat exchanger

SGT:

Simple gas turbine

t :

Topping cycle

c :

Compressor

b :

Bottoming cycle

a :

Air

T :

Turbine

Comb.:

Combined

net:

Net

f :

Fuel

References

  1. Kalina AI. Combined-cycle system with novel bottoming cycle. Trans ASME J Eng Gas Turbines Power. 1984;106(4):737–42.

    CAS  Google Scholar 

  2. Frost TH, Anderson A, Agnew B. A hybrid gas turbine cycle (Brayton/Ericsson): an alternative to conventional combined gas and steam turbine power plant. Proc Inst Mech Eng Part A (J Power Energy). 1997;211(A2):121–31.

    Google Scholar 

  3. Najjar YSH. Gas turbine cogeneration systems: a review of some novel cycles. Appl Therm Eng. 2000;20(2):179–97.

    Google Scholar 

  4. Kaviri AG, Jaafar MNM, Lazim TM. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm. Energ Convers Manag. 2012;58:94–103.

    Google Scholar 

  5. Khaliq A. Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int J Refrig. 2009;32:534–45.

    CAS  Google Scholar 

  6. Khaliq A, Kaushik SC. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Appl Energ. 2004;78:179–97.

    Google Scholar 

  7. Sanjay. Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle. Energy. 2011;36:157–67.

    Google Scholar 

  8. Cafaro S, Napoli L, Alberto T, Massardo AF. Monitoring of the thermoeconomic performance in an actual combined cycle power plant bottoming cycle. Energy. 2010;35:902–10.

    Google Scholar 

  9. Dolz V, Novella R, Antonio G, Sanchez J. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: study and analysis of the waste heat energy. Appl Therm Eng. 2011;36:269–78.

    Google Scholar 

  10. Tica A, Gueguen H, Dumur D, Faille D, Davelaar F. Design of a combined cycle power plant model for optimization. Appl Energy. 2012;98:256–65.

    Google Scholar 

  11. Tiwari AK, Hasan MM, Islam M. Effect of ambient temperature on the performance of a combined cycle power plant. Trans Can Soc Mech Eng. 2013;37(4):1177–88.

    Google Scholar 

  12. Ghazikhani M, Khazaee I, Abdekhodaie E. Exergy analysis of gas turbine with air bottoming cycle. Energy. 2014;72:599–607.

    Google Scholar 

  13. Alklaibi AM, Khan MN, Khan WA. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy. 2016;107:603–11.

    Google Scholar 

  14. Farzaneh-Gord M, Deymi-Dashtebayaz M. Effect of various inlet air cooling methods on gas turbine performance. Energy. 2011;36:1196–205.

    Google Scholar 

  15. Tlili I, Timoumi Y, Nasrallah SB. Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renew Energy. 2008;33:1911–21.

    CAS  Google Scholar 

  16. Tlili I. Renewable energy in Saudi Arabia: current status and future potentials. Environ Dev Sustain. 2015;17(4):859–86. https://doi.org/10.1007/s10668-014-9579-9.

    Article  Google Scholar 

  17. Tlili I, Timoumi Y, Ben Nasrallah S. Numerical simulation and losses analysis in a Stirling engine. Int J Heat Technol. 2006;24(1):97–105.

    Google Scholar 

  18. Tlili I, Timoumi Y, Ben Nasrallah S. Thermodynamic analysis of Stirling heat engine with regenerative losses and internal irreversibilities. Int J Engine Res. 2007;9:45–56.

    Google Scholar 

  19. Timoumi Y, Tlili I, Ben Nasrallah S. Performance optimization of Stirling engines. Renew Energy. 2008;33:2134–44.

    CAS  Google Scholar 

  20. Ahmadi MH, Ahmadi MA, Pourfayaz F, Hosseinzade H, Acıkkalp E, Tlili I, Feidt M. Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach. Renew Sustain Energy Rev. 2016;62:585–95. https://doi.org/10.1016/j.rser.2016.05.034.

    Article  Google Scholar 

  21. Sa’ed A, Tlili I. Numerical Investigation of working fluid effect on Stirling engine performance. Int J Therm Environ Eng. 2015;10(1):31–6.

    Google Scholar 

  22. Tlili I. Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions. Renew Sustain Energy Rev. 2012;16(4):2234–41. https://doi.org/10.1016/j.rser.2012.01.022.

    Article  Google Scholar 

  23. Tlili I. Thermodynamic study on optimal solar Stirling engine cycle taking into account the irreversibilities effects. Energy Procedia. 2012;14:584–91. https://doi.org/10.1016/j.egypro.2011.12.979.

    Article  Google Scholar 

  24. Tlili I. A numerical investigation of an alpha Stirling engine. Int J Heat Technol. 2012;30(1):23–35.

    Google Scholar 

  25. Tlili I, Musmar SA. Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Convers Manag. 2013;68:149–60. https://doi.org/10.1016/j.enconman.2013.01.005.

    Article  Google Scholar 

  26. Ibrahim TK, Rahman MM. Effect of compression ratio on performance of combined cycle gas turbine. Int J Energy Eng. 2012;2(1):9–14.

    Google Scholar 

  27. Khan MN, Tlili I, Khan WA. Thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arab J Sci Eng. 2017;42(11):4547–58.

    CAS  Google Scholar 

  28. Saghafifar M, Gadalla M. A critical assessment of thermo-economic analyses of different air bottoming cycles for waste heat recovery. Int J Energy Res. 2018;43(4):1–27.

    Google Scholar 

  29. Moon SW, Kwon HM, Kim TS, Kang DW, Sohn JL. A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle. Energy. 2018;160:625–34.

    Google Scholar 

  30. Colera M, Soria Á, Ballester J. A numerical scheme for the thermodynamic analysis of gas turbines. Appl Therm Eng. 2019;147:521–36.

    Google Scholar 

  31. Bazmi AA, Zahedi G, Hashim H. Design of decentralized biopower generation and distribution system for developing countries. J Clean Prod. 2015;86:209–20.

    Google Scholar 

  32. Chatzimouratidis AI, Pilavachi PA. Decision support systems for power plants impact on the living standard. Energy Convers Manag. 2012;64:182–98.

    Google Scholar 

  33. Atmaca E, Basar HB. Evaluation of power plants in Turkey using Analytic Network Process (ANP). Energy. 2012;44:555–63.

    Google Scholar 

  34. Salpingidou C, Tsakmakidou D, Vlahostergios Z, Misirlis D, Flouros M, Yakinthos K. Analysis of turbine blade cooling effect on recuperative gas turbines cycles performance. Energy. 2018;164:1271–85.

    Google Scholar 

  35. Maheshwari M, Singh O. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy. 2019;168:1217–36.

    CAS  Google Scholar 

  36. Salpingidou C, Vlahostergios Z, Misirlis D, Donnerhack S, Flouros M, Goulas A, Yakinthos K. Thermodynamic analysis of recuperative gas turbines and aero engines. Appl Therm Eng. 2017;124:250–60.

    Google Scholar 

  37. Pandžić H, Morales JM, Conejo AJ, Kuzle I. Offering model for a virtual power plant based on stochastic programming. Appl Energy. 2013;105:282–92.

    Google Scholar 

  38. Yazawa K, Hao M, Wu B, Silaen AK, Zhou CQ, Fisher TS, Shakouri A. Thermoelectric topping cycles for power plants to eliminate cooling water consumption. Energy Convers Manag. 2014;84:244–52.

    Google Scholar 

  39. Mohammadi K, Saghafifar M, McGowan JG. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Convers Manag. 2018;172:619–44.

    CAS  Google Scholar 

  40. Colmenar-Santosa A, Gómez-Camazóna D, Rosales-Asensiob E, Blanes-Peiró J-J. Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants. Appl Energy. 2018;223:30–51.

    Google Scholar 

  41. De Paepe W, Carrero MM, Bram S, Contino F, Parente A. Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts. Appl Energy. 2017;207:218–29.

    Google Scholar 

  42. Ibrahim TK, Basrawi F, Awad OI, Abdullah AN, Najafi G, Mamat R, Hagos FY. Thermal performance of gas turbine power plant based on exergy analysis. Appl Therm Eng. 2017;115:977–85.

    Google Scholar 

  43. Chacartegui R, Sánchez D, Muñoz JM, Sánchez T. Alternative ORC bottoming cycles for combined cycle power plants. Appl Energy. 2009;86:2162–70.

    CAS  Google Scholar 

  44. Saidur R, Rezaei M, Muzammil WK, Hassan MH, Paria S, Hasanuzzaman M. Technologies to recover exhaust heat from internal combustion engines. Appl Therm Eng. 2012;16(8):5649–59.

    CAS  Google Scholar 

  45. Khan MN, Tlili I. New advancement of high performance for a combined cycle power plant: thermodynamic analysis. Case Stud Therm Eng. 2018;12:166–75.

    Google Scholar 

  46. Ghazikhani M, Passandideh-Fard M, Mousavi M. Two new high-performance cycles for gas turbine with air bottoming. Energy. 2011;36:294–304.

    Google Scholar 

  47. Khan MN, Tlili I. Performance enhancement of a combined cycle using heat exchanger bypass control: a thermodynamic investigation. J Clean Prod. 2018;192:443–52.

    Google Scholar 

  48. Timoumi Y, Tlili I, Nasrallah SB. Design and performance optimization of GPU-3 Stirling engines. Energy. 2008;33:1100–14.

    Google Scholar 

  49. Timoumi Y, Tlili I, Nasrallah SB. Reduction of energy losses in a Stirling engine. Heat Technol. 2007;25(1):84–93.

    Google Scholar 

  50. Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin. 2019. https://doi.org/10.2166/wrd.2019.057.

    Article  Google Scholar 

  51. Al-Qawasmi A-R, Tlili I. Energy efficiency audit based on wireless sensor and actor networks: air-conditioning investigation. J Eng. 2018;2018: Article ID: 3640821. https://doi.org/10.1155/2018/3640821.

    Article  Google Scholar 

  52. Al-Qawasmi A-R, Tlili I. Energy efficiency and economic impact investigations for air-conditioners using wireless sensing and actuator networks. Energy Rep. 2018;4:478–85. https://doi.org/10.1016/j.egyr.2018.08.001.

    Article  Google Scholar 

  53. Tlili I, Khan WA, Ramadan K. MHD flow of nanofluid flow across horizontal circular cylinder: steady forced convection. J Nanofluids. 2019;8(1):179–86. https://doi.org/10.1166/jon.2019.1574.

    Article  Google Scholar 

  54. Tlili I, Khan WA, Ramadan K. Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation. J Nanofluids. 2018;7(5):879–90. https://doi.org/10.1166/jon.2018.1513.

    Article  Google Scholar 

  55. Almutairi MM, Osman M, Tlili I. Thermal behavior of auxetic honeycomb structure: an experimental and modeling investigation. ASME J Energy Resour Technol. 2018;140(12):122904-8–122904-8. https://doi.org/10.1115/1.4041091.

    Article  Google Scholar 

  56. Tlili I, Hamadneh NN, Khan WA. Thermodynamic analysis of MHD heat and mass transfer of nanofluids past a static wedge with Navier slip and convective boundary conditions. Arab J Sci Eng. 2018. https://doi.org/10.1007/s13369-018-3471-0.

    Article  Google Scholar 

  57. Tlili I, Hamadneh NN, Khan WA, Atawneh S. Thermodynamic analysis of MHD Couette–Poiseuille flow of water-based nanofluids in a rotating channel with radiation and Hall effects. J Therm Anal Calorim. 2018;132(3):1899–912. https://doi.org/10.1007/s10973-018-7066-5.

    Article  CAS  Google Scholar 

  58. Ramadan K, Tlili I. Shear work, viscous dissipation and axial conduction effects on microchannel heat transfer with a constant wall temperature. Proc Inst Mech Eng Part C J Mech Eng Sci. 2016;230(14):2496–507. https://doi.org/10.1177/0954406215598799.

    Article  Google Scholar 

  59. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118888.

    Article  Google Scholar 

  60. Sheikholeslami M. Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Google Scholar 

  61. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  62. Alkanhal TA, Sheikholeslami M, Usman M, Haq R-u, Shafee A, Al-Ahmadi AS, Tlili I. Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. Int J Heat Mass Transf. 2019;139:87–94.

    CAS  Google Scholar 

  63. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  64. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R-u. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Google Scholar 

  65. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  66. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  67. Sheikholeslami M, Haq R-u, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  68. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  69. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  70. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    CAS  Google Scholar 

  71. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  72. Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.

    CAS  Google Scholar 

  73. Li Y, Aski FS, Barzinjy AA, Dara RN, Shafee A, Tlili I. Nanomaterial thermal treatment along a permeable cylinder. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08706-7.

    Article  Google Scholar 

  74. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  75. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Google Scholar 

  76. Sheikholeslami M. Influence of magnetic field on Al2O3–H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    CAS  Google Scholar 

  77. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  78. Tlili I, Alkanhal TA, Othman M, Dara RN, Shafee A. Water management and desalination in KSA View 2030: case study of solar humidification and dehumidification system. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08700-z.

    Article  Google Scholar 

  79. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Yu. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    CAS  Google Scholar 

  80. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Google Scholar 

  81. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    CAS  Google Scholar 

  82. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    CAS  Google Scholar 

  83. Manh TD, Nam ND, Abdulrahman GK, Shafee A, Shamlooei M, Babazadeh H, Jilani AK, Tlili I. Effect of radiative source term on the behavior of nanomaterial with considering Lorentz forces. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09077-9.

    Article  Google Scholar 

  84. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  85. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  86. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  87. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    CAS  Google Scholar 

  88. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and Pressure Drop during condensation of refrigerant-based Nanofluid: an experimental Procedure. Int J Heat Mass Transf. 2018;122:643–50.

    CAS  Google Scholar 

  89. Sheikholeslami M, Sadoughi MK. Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  90. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger: review. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Deanship of Scientific Research (DSR) at Majmaah University, Majmaah, Saudi Arabia, for technical and financial support through vote number 38/111, 2017–2018, for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Alkanhal, T.A., Majdoubi, J. et al. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. J Therm Anal Calorim 144, 821–834 (2021). https://doi.org/10.1007/s10973-020-09550-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09550-w

Keywords

Navigation