Skip to main content
Log in

Enhanced heat transfer and flow analysis in a backward-facing step using a porous baffle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The backward-facing step or the sudden expansion in internal flows is an important problem in different areas. In this study, a porous baffle is mounted on the opposite wall of a sudden expansion to enhance heat transfer near the step. Unlike the solid baffle, which is extensively studied in the literature, the porous baffle has a lower pressure drop, and its properties can be tuned to reach the optimal prospected performance. Effects of different porous baffle geometrical parameters including its normalized height (Hb = 0.5, 1.0, 1.5, 1.75), width (Wb = 0.5, 1, 1.5, 2.0, 2.5), porous baffle-step relative distance (D = 1, 2, 3, 4), Darcy number (10−2, 10−3, 10−4, 10−6), and Reynolds number (100, 200, 300, 400, 500) on the heat transfer and pressure drop are investigated. The simulation indicates that higher Reynolds numbers enhance more the heat transfer (35% improvement at Re = 500 with respect to 10% at Re = 100). Also, longer baffles can lead to higher heat transfer rates (5% improvement in Hb = 0.5 with respect to 32% at Hb = 1.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C p :

Specific heat of the fluid (kJ kg−1 K−1)

D :

Normalized distance of the baffle

F :

Inertial factor

H :

Duct height downstream of the step (m)

h :

Duct height upstream of the step (m)

h b :

Baffle height (m)

H b :

Normalized baffle height

k :

Thermal conductivity (W m−1 K−1))

K :

Porous media permeability (m2)

k f :

Thermal conductivity of fluid (W m−1 K−1)

Nu:

Nusselt number

Nu*:

Nu/Nub

Nub :

Nusselt number when a porous baffle is not used

p :

Pressure (pa)

p*:

Normalized pressure drop

Rem :

Reynolds number

S :

Step height (m)

T :

Temperature (K)

T 0 :

Inlet temperature (K)

T w :

Wall temperature (K)

u :

Velocity component in the x-direction (m s−1)

u m :

Mean velocity (m s−1)

v :

Velocity component in the y-direction (m s−1)

w b :

Width of the baffle (m)

W b :

Normalized width of the baffle

x :

Streamwise coordinate direction (m)

X :

Normalized streamwise coordinate

y :

Transverse coordinate direction (m)

Y :

Normalized transverse coordinate

ε :

Porosity

μ :

Dynamic viscosity (N m−1 s−1)

μ e :

Effective dynamic viscosity (N m−1s−1)

ρ :

Density (kg m-3)

b :

Base state

m :

Mean

w :

Wall

e :

Effective

References

  1. Norouzi AM, Siavashi M, Khaliji Oskouei M. Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles. Renew Energy. 2020;145:569–84.

    CAS  Google Scholar 

  2. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    CAS  Google Scholar 

  3. Ahmad Soltani L, Shivanian E, Ezzati R. convection–radiation heat transfer in solar heat exchangers filled with a porous medium: exact and shooting homotopy analysis solution. Appl Therm Eng. 2016;103:537–42.

    Google Scholar 

  4. Li S, Yuan J, Xie G, Sunden B. numerical investigation of transport phenomena in high temperature proton exchange membrane fuel cells with different flow field designs. Numer Heat Transf Part Appl. 2017;72(11):807–20.

    CAS  Google Scholar 

  5. Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel. Int J Hydrog Energy. 2019;44(5):3121–37.

    CAS  Google Scholar 

  6. Doranehgard MH, Siavashi M. The effect of temperature dependent relative permeability on heavy oil recovery during hot water injection process using streamline-based simulation. Appl Therm Eng. 2018;129:106–16.

    Google Scholar 

  7. Siavashi M, Doranehgard MH. Particle swarm optimization of thermal enhanced oil recovery from oilfields with temperature control. Appl Therm Eng. 2017;123:658–69.

    CAS  Google Scholar 

  8. Siavashi M, Blunt MJ, Raisee M, Pourafshary P. Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. Comput Fluids. 2014;103:116–31.

    Google Scholar 

  9. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017;133:73–90.

    Google Scholar 

  10. Ren Q, He Y-L, Su K-Z, Chan CL. Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice boltzmann modeling. Numer Heat Transf Part Appl. 2017;72(10):745–64.

    CAS  Google Scholar 

  11. Du Y, Ding Y. Towards improving charge/discharge rate of latent heat thermal energy storage (LHTES) by embedding metal foams in phase change materials (PCMs). Chem Eng Process Process Intensif. 2016;108:181–8.

    CAS  Google Scholar 

  12. Ghasemi K, Siavashi M. Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int J Mech Sci. 2020;165:105199.

    Google Scholar 

  13. Ghasemi K, Siavashi M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq. 2017;233:415–30.

    CAS  Google Scholar 

  14. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    CAS  Google Scholar 

  15. Alam T, Kim M-H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev. 2018;81:813–39.

    CAS  Google Scholar 

  16. Al-aswadi AA, Mohammed HA, Shuaib NH, Campo A. Laminar forced convection flow over a backward facing step using nanofluids. Int Commun Heat Mass Transf. 2010;37(8):950–7.

    CAS  Google Scholar 

  17. Siavashi M, Talesh Bahrami HR, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl Therm Eng. 2018;138:465–74.

    CAS  Google Scholar 

  18. Siavashi M, Iranmehr S. Using sharp wedge-shaped porous media in front and wake regions of external nanofluid flow over a bundle of cylinders. Int J Numer Methods Heat Fluid Flow. 2019;29(10):3730–55.

    Google Scholar 

  19. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  20. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  21. Amiri A, Arzani HK, Kazi SN, Chew BT, Badarudin A. Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water-ethylene glycol nanofluids. Int J Heat Mass Transf. 2016;97:538–46.

    CAS  Google Scholar 

  22. Selimefendigil F, Öztop HF. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J Therm Sci Eng Appl. 2018;10(4):041003.

    Google Scholar 

  23. Togun H, Safaei MR, Sadri R, Kazi SN, Badarudin A, Hooman K, Sadeghinezhad E. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput. 2014;239:153–70.

    Google Scholar 

  24. Selimefendigil F, Öztop HF. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid. Int Commun Heat Mass Transf. 2013;45:111–21.

    CAS  Google Scholar 

  25. Hilo AK, Abu Talib AR, Acosta Iborra A, Hameed Sultan MT, Abdul Hamid MF. Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer. Energy. 2020;190:116294.

    Google Scholar 

  26. Tsay Y-L, Chang TS, Cheng JC. Heat transfer enhancement of backward-facing step flow in a channel by using baffle installation on the channel wall. Acta Mech. 2005;174(1):63–76.

    Google Scholar 

  27. Heshmati A, Mohammed HA, Darus AN. Mixed convection heat transfer of nanofluids over backward facing step having a slotted baffle. Appl Math Comput. 2014;240:368–86.

    Google Scholar 

  28. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135(2):1399–415.

    CAS  Google Scholar 

  29. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61.

    CAS  Google Scholar 

  30. Ramezanpour M, Siavashi M. Application of SiO2–water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135(1):565–80.

    CAS  Google Scholar 

  31. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137(1):267–87.

    CAS  Google Scholar 

  32. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrog Energy. 2019;44(30):15933–48.

    CAS  Google Scholar 

  33. Izadi A, Siavashi M, Rasam H, Xiong Q. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Appl Therm Eng. 2020;168:114843.

    CAS  Google Scholar 

  34. Zahmatkesh I, Naghedifar SA. Oscillatory mixed convection in the jet impingement cooling of a horizontal surface immersed in a nanofluid-saturated porous medium. Numer Heat Transf Part Appl. 2017;72(5):401–16.

    CAS  Google Scholar 

  35. Pourrahmani H, Moghimi M, Siavashi M, Shirbani M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng. 2019;150:433–44.

    Google Scholar 

  36. Pourrahmani H, Siavashi M, Moghimi M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy. 2019;182:443–59.

    Google Scholar 

  37. Toosi MH, Siavashi M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J Mol Liq. 2017;238:553–69.

    CAS  Google Scholar 

  38. Joibary SMM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08991-2.

    Article  Google Scholar 

  39. Siavashi M, Joibary SMM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2019;135(2):1595–610.

    CAS  Google Scholar 

  40. Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. Int Commun Heat Mass Transf. 2019;109:104367.

    CAS  Google Scholar 

  41. Asiaei S, Zadehkafi A, Siavashi M. Multi-layered porous foam effects on heat transfer and entropy generation of nanofluid mixed convection inside a two-sided lid-driven enclosure with internal heating. Transp Porous Media. 2019;126(1):223–47.

    CAS  Google Scholar 

  42. Yaghoubi Emami R, Siavashi M, Shahriari Moghaddam G. The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018;29(3):519–36.

    CAS  Google Scholar 

  43. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29(1):142–56.

    CAS  Google Scholar 

  44. Siavashi M, Rostami A. Two-phase simulation of non-newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Google Scholar 

  45. Mousavi S, Siavashi M, Heyhat MM. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins. Numer Heat Transf Part Appl. 2019;75(8):560–77.

    Google Scholar 

  46. Siavashi M, Talesh Bahrami HR, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    CAS  Google Scholar 

  47. Chen XB, Yu P, Winoto SH, Low HT. Forced convection over a backward-facing step with a porous floor segment. Numer Heat Transf Part Appl. 2008;53(11):1211–30.

    Google Scholar 

  48. Abu-Hijleh B. Convection heat transfer from a laminar flow over a 2-D backward facing step with asymmetric and orthotropic porous floor segments. Numer Heat Transf Part Appl. 1997;31(3):325–35.

    Google Scholar 

  49. Abu-Hijleh BA. Heat transfer from a 2D backward facing step with isotropic porous floor segments. Int J Heat Mass Transf. 2000;43(15):2727–37.

    Google Scholar 

  50. de Lemos MJS, Galuppo WC. Effect of porous insert on heat transfer in a backward-facing step flow. New York: American Society of Mechanical Engineers Digital Collection; 2016.

    Google Scholar 

  51. Mohammed HA, Alawi OA, Wahid MA. Mixed convective nanofluid flow in a channel having backward-facing step with a baffle. Powder Technol. 2015;275:329–43.

    CAS  Google Scholar 

  52. Cheng J-C, Tsay Y-L. Effects of solid and slotted baffles on the convection characteristics of backward-facing step flow in a channel. Heat Mass Transf. 2006;42(9):843–52.

    CAS  Google Scholar 

  53. Al-Azmi BS. Analysis of transport models and computation algorithms for flow through porous media. PhD Thesis, The Ohio State University, 2003.

  54. Maerefat M, Mahmoudi SY, Mazaheri K. Numerical simulation of forced convection enhancement in a pipe by porous inserts. Heat Transf Eng. 2011;32(1):45–56.

    CAS  Google Scholar 

  55. Kaviany M. Laminar flow through a porous channel bounded by isothermal parallel plates. Int J Heat Mass Transf. 1985;28(4):851–8.

    Google Scholar 

  56. Mohamad AA, Karim GA. Flow and heat transfer within segregated beds of solid particles. J Porous Media. 2001;4(3):1–10.

    Google Scholar 

  57. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numer Heat Transf Part Appl. 2017;71(12):1251–73.

    CAS  Google Scholar 

  58. Nie JH, Chen YT, Hsieh HT. Effects of a baffle on separated convection flow adjacent to backward-facing step. Int J Therm Sci. 2009;48(3):618–25.

    CAS  Google Scholar 

  59. Morosuk TV. Entropy generation in conduits filled with porous medium totally and partially. Int J Heat Mass Transf. 2005;48(12):2548–60.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51775165) and Shanghai Natural Science Foundation (18030501200). The authors would like to acknowledge the support provided by Jian Ruan, Zhejiang University of Technology, Hangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Cui, G., Zhai, J. et al. Enhanced heat transfer and flow analysis in a backward-facing step using a porous baffle. J Therm Anal Calorim 141, 1919–1932 (2020). https://doi.org/10.1007/s10973-020-09437-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09437-w

Keywords

Navigation