Skip to main content
Log in

Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, 3-D numerical simulations are conducted for single-phase flow and conjugate heat transfer in mini-channel heat sinks subjected to constant heat flux. The effects of using different gallium alloys (EGaInSn, EGaIn, GaSn, and GaIn) and various substrate materials (copper alloy, aluminum, tungsten, and silicon) on the temperature distribution, pumping power, pressure drop, maximum heat flux, and the total thermal resistance are comprehensively investigated for a series of Reynolds number (300–1900). Among all coolants considered, it is found that EGaIn reduces the flow resistance most efficiently. It is also found that the substrate material’s conductivity significantly influences the thermal resistance of the mini-channel. The higher conductivity leads to lower thermal resistance. In addition, when comparing to other gallium alloys, the GaIn alloy with higher thermal conductivity and specific heat shows better thermal performance. Finally, numerical results of the pumping power and pressure drop for gallium alloys are compared and discussed with the prediction by analytical correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Area (m2)

A sf :

Surface area (m2)

C p :

Specific heat (Jkg−1K−1)

D h :

Hydraulic diameter (m)

f app :

Apparent friction coefficient

f :

Friction factor

H :

Channel height (m)

h :

Heat transfer coefficient (Wm−2K−1)

k :

Thermal conductivity (Wm−1K−1)

K r :

Thermal conductivity ratio

L :

Heat sink length (m)

:

Mass flow rate (kg s−1)

n :

Number of channels

P :

Pressure (Pa)

Pr:

Prandtl number

q b :

Bottom heat flux (Wm−2)

q max :

Maximum heat flux (Wm−2)

Q :

Volume flow rate (m3s−1)

Q conv :

Convective heat flux (Wm−2)

R tot :

Total thermal resistance (K W−1)

Re:

Reynolds number

T :

Temperature (K)

t b :

Base thickness (m)

u :

Velocity component in x-direction

U in :

Velocity at inlet (ms−1)

v :

Velocity component in y-direction

w :

Velocity component in z-direction

W pp :

Pumping power (W)

W :

Heat sink width (m)

W c :

Channel width (m)

W w :

Channel wall thickness (m)

x hyd :

Dimensionless axial distance for hydrodynamic entrance region

µ :

Dynamic viscosity (kg m−1s−1)

ρ :

Density (kg m−3)

η f :

Fin efficiency

P :

Pressure drop (Pa)

α :

Channel aspect ratio

b:

Bottom

cap:

Capacity

con:

Conduction

conv:

Convection

c:

Coolant

fd:

Fully developed

f:

Working fluid

in:

Inlet

max:

Maximum

o:

Output

s:

Heat sink solid part

References

  1. Khalaj AH, Halgamuge SK. A Review on efficient thermal management of air-and liquid-cooled data centers: from chip to the cooling system. Appl Energy. 2017;205:1165–88.

    Article  Google Scholar 

  2. Tzuk Y, Tal A, Goldring S, et al. Diamond cooling of high-power diode-pumped solid-state lasers. IEEE J Quantum Electron. 2004;40(3):262–9.

    Article  CAS  Google Scholar 

  3. Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31.

    Article  CAS  Google Scholar 

  4. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.

    Google Scholar 

  5. Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016;107:870–9.

    Article  Google Scholar 

  6. Xie XL, Liu ZJ, He YL, et al. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl Therm Eng. 2009;29(1):64–74.

    Article  CAS  Google Scholar 

  7. Lee PS, Garimella SV, Liu D. Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf. 2005;48(9):1688–704.

    Article  CAS  Google Scholar 

  8. Ijam A, Saidur R, Ganesan P. Cooling of minichannel heat sink using nanofluids. Int Commun Heat Mass Transf. 2012;39(8):1188–94.

    Article  CAS  Google Scholar 

  9. Kim SJ. Methods for thermal optimization of microchannel heat sinks. Heat Transf Eng. 2004;25(1):37–49.

    Article  CAS  Google Scholar 

  10. Liu D, Garimella SV. Analysis and optimization of the thermal performance of microchannel heat sinks. Int J Numer Methods Heat Fluid Flow. 2005;15:7–26.

    Article  Google Scholar 

  11. Dang T, Teng JT. Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers. Heat Mass Transf. 2011;47(10):1311–22.

    Article  CAS  Google Scholar 

  12. Zhang XD, Yang XH, Zhou YX, Rao W, Gao JY, Ding YJ, Shu QQ, Liu J. Experimental investigation of Galinstan based mini-channel cooling for high heat flux and large heat power thermal management. Energy Convers Manag. 2019;185:248–58.

    Article  Google Scholar 

  13. Tawk M, Avenas Y, Lebouc A, Petit M. Numerical study of a liquid metal mini-channel cooler for power semiconductor devices. In: 17th international workshop on thermal investigations of ICs and systems (THERMINIC), Paris, 2011; pp. 1–6.

  14. Dickey MD. Emerging applications of liquid metals featuring surface oxides. Appl Mater Interfaces. 2014;6(21):18369–79.

    Article  CAS  Google Scholar 

  15. Spells KE. The determination of the viscosity of liquid gallium over an extended range of temperature. Proc Phys Soc. 1936;48(2):299.

    Article  CAS  Google Scholar 

  16. Ma K, Jing L. Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng China. 2007;1(4):384–402.

    Article  Google Scholar 

  17. Liu J, Zhou YX. China Patent No. 02131419, 2002.

  18. Ma KQ, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J Phys D Appl Phys. 2007;40(15):4722–9.

    Article  CAS  Google Scholar 

  19. Prokhorenko VY, Roshchupkin VV, Pokrasin MA, Prokhorenko SV, Kotov VV. Liquid gallium: potential uses as a heat-transfer agent. High Temp. 2000;38(6):954–68.

    Article  CAS  Google Scholar 

  20. Bo G, Ren L, Xu X, Du Y, Dou S. Recent progress on liquid metals and their applications. Adv Phys X. 2018;3(1):1446359.

    Google Scholar 

  21. Evans DS, Prince A. Thermal analysis of Ga–In–Sn system. Metal Sci. 1978;12(9):411.

    Article  CAS  Google Scholar 

  22. Zaretabar M, Asadian H, Ganji DD. Numerical simulation of heat sink cooling in the mainboard chip of a computer with temperature dependent thermal conductivity. Appl Therm Eng. 2018;130:1450–9.

    Article  Google Scholar 

  23. Shkarah AJ, Sulaiman MYB, Ayob MRBH, Togun H. A 3D numerical study of heat transfer in a single-phase micro-channel heat sink using graphene, aluminum and silicon as substrates. Int Commun Heat Mass Transf. 2013;48:108–15.

    Article  CAS  Google Scholar 

  24. Barbier F, Blanc J. Corrosion of martensitic and austenitic steels in liquid gallium. J Mater Res. 1999;14(3):737.

    Article  CAS  Google Scholar 

  25. Tawk M, Avenas Y, Kedous-Lebouc A, Petit M. Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers. IEEE Trans Ind Appl. 2013;49(3):1421–9.

    Article  CAS  Google Scholar 

  26. Deng YG, Liu J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A Mater Sci Process. 2009;95(3):907–15.

    Article  CAS  Google Scholar 

  27. Deng YG, Liu J, Zhou YX. Liquid metal based mini/micro channel cooling device. In: Proceedings of 7th international conference on nanochannels, microchannels, minichannels, Pohang, 2009; pp. 22–4.

  28. Luo M, Liu J. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices. Front Energy. 2013;7(4):479–86.

    Article  Google Scholar 

  29. Zhang R, Hodes M, Lower N, Wilcoxon R. Water-based microchannel and Galinstan-based mini-channel cooling beyond 1 kW/cm2 heat flux. IEEE Trans Compon Packag Manuf Technol. 2015;5(6):762–70.

    Article  CAS  Google Scholar 

  30. Yang XH, Tan SC, Ding YJ, Liu J. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Appl Therm Eng. 2017;117:289–96.

    Article  CAS  Google Scholar 

  31. Yang XH, Tan SC, Liu J. Investigation of the flow and thermal performance of liquid metal mini-channel-heat sink. J Eng Thermophys. 2019;40(4):916–25 (In Chinese).

    Google Scholar 

  32. Ahmed HE, Salman BH, Kherbeet AS, et al. Optimization of thermal design of heat sinks: a review. Int J Heat Mass Transf. 2018;118:129–53.

    Article  Google Scholar 

  33. Biswal L, Chakraborty S, Som SK. Design and optimization of single-phase liquid cooled microchannel heat sink. IEEE Trans Compon Packag Technol. 2009;32(4):876–86.

    Article  Google Scholar 

  34. Liu D, Zhao FY, Yang HX, Tang GF. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy. 2015;83:29–36.

    Article  CAS  Google Scholar 

  35. Liu S, Sweatman K, McDonald S, Nogita K. Ga-based alloys in microelectronic interconnects: a review. Materials. 2018;11(8):1384.

    Article  Google Scholar 

  36. Hung TC, Yan WM, Li WP. Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int J Heat Mass Transf. 2012;55:3090–9.

    Article  Google Scholar 

  37. Harms TM, Kazmierczak MJ, Gerner FM. Developing convective heat transfer in deep rectangular microchannels. Int J Heat Fluid Flow. 1999;20(2):149–57.

    Article  CAS  Google Scholar 

  38. ANSYS Fluent 19.0. ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317.

  39. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf. 1972;15(10):1787–806.

    Article  Google Scholar 

  40. Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 4th ed. New York: Wiley; 1996.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11802079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A., Selvakumar, D., Iranzo, A. et al. Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials. J Therm Anal Calorim 141, 289–300 (2020). https://doi.org/10.1007/s10973-020-09318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09318-2

Keywords

Navigation