Skip to main content
Log in

Assessing magnetic iron oxide nanoparticle properties under different thermal treatments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Magnetic nanoparticle structures have been examined as potential carrier vehicles and substrates in a wide range of applications where they undergo mechanical, chemical, and/or thermal manipulation to allow for their modification, conjugation, and transport. For safe and effective use, it is imperative to not only measure the initial physicochemical and structural properties of nanomaterials, but also identify and quantify any property changes related to a loss of chemical and/or physical integrity during processing and usage conditions. In this study, an assessment of iron oxide magnetic nanoparticle thermal stability using modulated differential scanning calorimetry (mDSC) and a controlled heating system is conducted on two types of iron oxide nanoparticles: maghemite (Fe2O3; 500 nm) with silanol surface functional groups and magnetite (Fe3O4; 200 nm) with primary amine-terminated alkoxysilane surface functional groups. mDSC results revealed an endothermic peak at 388 K for both types of nanoparticles indicating possible molecular rearrangement within the structure. To confirm this result, iron oxide nanoparticles in aqueous suspensions were heated at discrete temperatures from 303 to 403 K. Calorimetry, FTIR spectroscopy, and dynamic light scattering measurements were used to examine changes in the chemical and physical stability of the suspensions. Morphological characteristics were evaluated using optical microscopy, transmission electron microscopy, and atomic force microscopy. Results showed that the chemical and morphological structure of the nanocomposite is critical in determining the thermal performance of the iron oxide nanoparticles. Amine-terminated silane-functionalized magnetite nanoparticles were highly susceptible to morphological and surface chemistry changes starting at ca. 353 K. Conversely, silanol-functionalized maghemite nanoparticles were shown to be stable in terms of morphology and chemical structure up to 403 K. Micrographs demonstrated variations in magnetic domains distribution after exposing the nanoparticles to thermal treatments, confirming the results obtained through mDSC and FTIR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Latham AH, Williams ME. Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res. 2008;41(3):411–20. https://doi.org/10.1021/ar700183b.

    Article  CAS  PubMed  Google Scholar 

  2. Monroe JG, Vasquez ES, Aspin ZS, Walters KB, Berg MJ, Thompson SM. Electromagnetic induction by ferrofluid in an oscillating heat pipe. Appl Phys Lett. 2015. https://doi.org/10.1063/1.4923400.

    Article  Google Scholar 

  3. Woo E, Ponvel KM, Ahn I-S, Lee C-H. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of his-tagged enzymes. J Mater Chem. 2010;20(8):1511–5. https://doi.org/10.1039/B918682D.

    Article  CAS  Google Scholar 

  4. Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016;6(50):43989–4012. https://doi.org/10.1039/C6RA02129H.

    Article  CAS  Google Scholar 

  5. Rabbani Y, Hajinajaf N, Tavakoli O. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. J Therm Anal Calorim. 2019;135(3):1687–97. https://doi.org/10.1007/s10973-018-7538-7.

    Article  CAS  Google Scholar 

  6. Bogren S, Fornara A, Ludwig F, Del Puerto Morales M, Steinhoff U, Hansen MF, et al. Classification of magnetic nanoparticle systems-synthesis, standardization and analysis methods in the nanomag project. Int J Mol Sci. 2015;16(9):20308–25. https://doi.org/10.3390/ijms160920308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bender P, Fock J, Frandsen C, Hansen MF, Balceris C, Ludwig F, et al. Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. J Phys Chem C. 2018;122(5):3068–77. https://doi.org/10.1021/acs.jpcc.7b11255.

    Article  CAS  Google Scholar 

  8. Wells J, Kazakova O, Posth O, Steinhoff U, Petronis S, Bogart LK, et al. Standardisation of magnetic nanoparticles in liquid suspension. J Phys D Appl Phys. 2017;50(38):383003. https://doi.org/10.1088/1361-6463/aa7fa5.

    Article  CAS  Google Scholar 

  9. Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, et al. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnol. 2016;14(1):37. https://doi.org/10.1186/s12951-016-0190-0.

    Article  CAS  Google Scholar 

  10. Eberbeck D, Dennis CL, Huls NF, Krycka KL, Gruttner C, Westphal F. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2013;49(1):269–74. https://doi.org/10.1109/TMAG.2012.2226438.

    Article  Google Scholar 

  11. Urraca JL, Cortés-Llanos B, Aroca C, Presa PDL, Pérez L, Moreno-Bondi MC. Magnetic field-induced polymerization of molecularly imprinted polymers. J Phys Chem C. 2018;122(18):10189–96. https://doi.org/10.1021/acs.jpcc.7b12804.

    Article  CAS  Google Scholar 

  12. Bhandari S, Khandelia R, Pan UN, Chattopadhyay A. Surface complexation-based biocompatible magnetofluorescent nanoprobe for targeted cellular imaging. ACS Appl Mater Interfaces. 2015;7(32):17552–7. https://doi.org/10.1021/acsami.5b04022.

    Article  CAS  PubMed  Google Scholar 

  13. Pan UN, Sanpui P, Paul A, Chattopadhyay A. Surface-complexed zinc ferrite magnetofluorescent nanoparticles for killing cancer cells and single-particle-level cellular imaging. ACS Appl Nano Mater. 2018;1(6):2496–502. https://doi.org/10.1021/acsanm.8b00545.

    Article  CAS  Google Scholar 

  14. Jirák Z, Kuličková J, Herynek V, Maryško M, Koktan J, Kaman O. Titania-coated manganite nanoparticles: synthesis of the shell, characterization and MRI propertie. J Magn Magn Mater. 2017;427:245–50. https://doi.org/10.1016/J.JMMM.2016.10.097.

    Article  Google Scholar 

  15. Balasubramaniam S, Kayandan S, Lin YN, Kelly DF, House MJ, Woodward RC, St. Pierre TG, Riffle JS, Davis RM. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir. 2014;30(6):1580–7. https://doi.org/10.1021/la403591z.

    Article  CAS  PubMed  Google Scholar 

  16. Ao L, Wang B, Liu P, Huang L, Yue C, Gao D, Wu C, Su W. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale. 2014;6:10710–6. https://doi.org/10.1039/C4NR02484B.

    Article  CAS  PubMed  Google Scholar 

  17. Zoppellaro G, Kolokithas-Ntoukas A, Polakova K, Tucek J, Zboril R, Loudos G, Fragogeorgi E, Diwoky C, Tomankova K, Avgoustakis K, Kouzoudis D, Bakandritsos A. Theranostics of epitaxially condensed colloidal nanocrystal clusters, through a soft biomineralization route. Chem Mater. 2014;26(6):2062–74. https://doi.org/10.1021/cm404053v.

    Article  CAS  Google Scholar 

  18. Javed Y, Lartigue L, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D. Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small. 2014;10(16):3325–37. https://doi.org/10.1002/smll.201400281.

    Article  CAS  PubMed  Google Scholar 

  19. Kostopoulou A, Brintakis K, Fragogeorgi E, Anthousi A, Manna L, Begin-Colin S, Billotey C, Ranella A, Loudos G, Athanassakis I, Lappas A. Iron oxide colloidal nanoclusters as theranostic vehicles and their interactions at the cellular level. Nanomaterials. 2018;8(5):315. https://doi.org/10.3390/nano8050315.

    Article  CAS  PubMed Central  Google Scholar 

  20. Hickey RJ, Koski J, Meng X, Riggleman RA, Zhang P, Park SJ. Size-controlled self-assembly of superparamagnetic polymersomes. ACS Nano. 2014;8(1):495–502. https://doi.org/10.1021/nn405012h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abadeh A, Passandideh-Fard M, Maghrebi MJ, Mohammadi M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J Therm Anal Calorim. 2019;135(2):1323–34. https://doi.org/10.1007/s10973-018-7662-4.

    Article  CAS  Google Scholar 

  22. Lai J-J, Lai W-R, Chen C-Y, Chen S-W, Chiang C-L. Multifunctional magnetic plasmonic nanoparticles for applications of magnetic/photo-thermal hyperthermia and surface enhanced Raman spectroscopy. J Magn Magn Mater. 2013;331:204–7. https://doi.org/10.1016/j.jmmm.2012.11.051.

    Article  CAS  Google Scholar 

  23. Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MDP, Baldomir D, Martinez-Boubeta C. Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C. 2014;118(11):5927–34. https://doi.org/10.1021/jp410717m.

    Article  CAS  Google Scholar 

  24. Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep. 2013. https://doi.org/10.1038/srep01652.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakhchi ME, Esfahani JA. Cu–water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94. https://doi.org/10.1016/j.powtec.2018.08.087.

    Article  CAS  Google Scholar 

  26. Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019;138(2):1423–36. https://doi.org/10.1007/s10973-019-08169-w.

    Article  CAS  Google Scholar 

  27. Nakhchi ME, Esfahani JA. Numerical investigation of turbulent Cu–water nanofluid in heat exchanger tube equipped with perforated conical rings. Adv Powder Technol. 2019;30(7):1338–47. https://doi.org/10.1016/j.apt.2019.04.009.

    Article  CAS  Google Scholar 

  28. Cacua K, Buitrago-Sierra R, Herrera B, Pabón E, Murshed SMS. Nanofluids’ stability effects on the thermal performance of heat pipes. J Therm Anal Calorim. 2019;136(4):1597–614. https://doi.org/10.1007/s10973-018-7787-5.

    Article  CAS  Google Scholar 

  29. Dippong T, Levei EA, Cadar O, Goga F, Toloman D, Borodi G. Thermal behavior of Ni, Co and Fe succinates embedded in silica matrix. J Therm Anal Calorim. 2019;136(4):1587–96. https://doi.org/10.1007/s10973-019-08117-8.

    Article  CAS  Google Scholar 

  30. Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ. Numerical study of magnetic field effect on nanofluid forced convection in a channel. J Magn Magn Mater. 2015;374:11–7. https://doi.org/10.1016/j.jmmm.2014.08.001.

    Article  CAS  Google Scholar 

  31. Mousavi SV, Sheikholeslami M, Gorji Bandpy M, Barzegar Gerdroodbary M. The influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem Eng Res Des. 2016;113:112–24. https://doi.org/10.1016/j.cherd.2016.07.009.

    Article  CAS  Google Scholar 

  32. Al-Balushi LM, Uddin MJ, Rahman MM. Natural convective heat transfer in a square enclosure utilizing magnetic nanoparticles. Propuls Power Res. 2019;8(3):194–209. https://doi.org/10.1016/j.jppr.2018.07.009.

    Article  Google Scholar 

  33. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. J Therm Anal Calorim. 2019;138(2):1371–94. https://doi.org/10.1007/s10973-019-08249-x.

    Article  CAS  Google Scholar 

  34. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6(7):418–22. https://doi.org/10.1038/nnano.2011.95.

    Article  CAS  PubMed  Google Scholar 

  35. Bitar A, Vega-Chacón J, Lgourna Z, Fessi H, Jafelicci M, Elaissari A. Submicron silica shell–magnetic core preparation and characterization. Colloids Surf A. 2018;537:318–24. https://doi.org/10.1016/J.COLSURFA.2017.10.034.

    Article  CAS  Google Scholar 

  36. Hu Y, Meng L, Niu L, Lu Q. Highly cross-linked and biocompatible polyphosphazene-coated superparamagnetic Fe3O4 nanoparticles for magnetic resonance imaging. Langmuir. 2013;29(29):9156–63. https://doi.org/10.1021/la402119s.

    Article  CAS  PubMed  Google Scholar 

  37. Wei H, Bruns OT, Chen O, Bawendi MG. Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integr Biol. 2013;5(1):108–14.

    Article  CAS  Google Scholar 

  38. Kurzhals S, Gal N, Zirbs R, Reimhult E. Aggregation of thermoresponsive core–shell nanoparticles: influence of particle concentration, dispersant molecular weight and grafting. J Colloid Interface Sci. 2017;500:321–32. https://doi.org/10.1016/j.jcis.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  39. Puscasu E, Sacarescu L, Lupu N, Grigoras M, Oanca G, Balasoiu M, Creanga D. Iron oxide–silica nanocomposites yielded by chemical route and sol–gel method. J Sol Gel Sci Technol. 2016;79(3):457–65. https://doi.org/10.1007/S10971-016-3996-1.

    Article  CAS  Google Scholar 

  40. Illés E, Szekeres M, Tóth IY, Szabó Á, Iván B, Turcu R, Vékás L, Zupkó I, Jaics G, Tombácz E. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application. J Magn Magn Mater. 2018;451:710–20. https://doi.org/10.1016/j.jmmm.2017.11.122.

    Article  CAS  Google Scholar 

  41. von der Lühe M, Weidner A, Dutz S, Schacher FH. Reversible electrostatic adsorption of polyelectrolytes and bovine serum albumin onto polyzwitterion-coated magnetic multicore nanoparticles: implications for sensing and drug delivery. ACS Appl Nano Mater. 2018;1(1):232–44. https://doi.org/10.1021/acsanm.7b00118.

    Article  CAS  Google Scholar 

  42. Chaudhary RG, Juneja HD, Pagadala R, Gandhare NV, Gharpure MP. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG–DTG and DTA techniques. J Saudi Chem Soc. 2015;19(4):442–53. https://doi.org/10.1016/j.jscs.2014.06.002.

    Article  Google Scholar 

  43. Saville SL, Stone RC, Qi B, Mefford OT. Investigation of the stability of magnetite nanoparticles functionalized with catechol based ligands in biological media. J Mater Chem. 2012;22(47):24909–17. https://doi.org/10.1039/C2JM34902G.

    Article  CAS  Google Scholar 

  44. Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015;15(4):2468–73. https://doi.org/10.1021/acs.nanolett.5b00320.

    Article  CAS  PubMed  Google Scholar 

  45. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160–6. https://doi.org/10.1021/jp060974z.

    Article  CAS  PubMed  Google Scholar 

  46. Taboada E, Solanas R, Rodríguez E, Weissleder R, Roig A. Supercritical-fluid-assisted one-pot synthesis of biocompatible core(γ-Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T2-contrast agents for magnetic resonance imaging. Adv Funct Mater. 2009;19(14):2319–24. https://doi.org/10.1002/adfm.200801681.

    Article  CAS  Google Scholar 

  47. Green LAW, Thuy TT, Mott DM, Maenosono S, Kim Thanh NT. Multicore magnetic FePt nanoparticles: controlled formation and properties. RSC Adv. 2014;4(3):1039–44. https://doi.org/10.1039/C3RA44319A.

    Article  CAS  Google Scholar 

  48. Sathya A, Ravindran TR, Philip J. Superior thermal stability of polymer capped Fe3O4 magnetic nanoclusters. J Am Ceram Soc. 2018;101(1):483–91. https://doi.org/10.1111/jace.15197.

    Article  CAS  Google Scholar 

  49. Vichery C, Maurin I, Bonville P, Boilot J-P, Gacoin T. Influence of protected annealing on the magnetic properties of γ-Fe2O3 nanoparticles. J Phys Chem C. 2012;116(30):16311–8. https://doi.org/10.1021/jp305069a.

    Article  CAS  Google Scholar 

  50. Osterholtz FD, Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6(1):127–49. https://doi.org/10.1163/156856192X00106.

    Article  CAS  Google Scholar 

  51. Hong Y, Cha BJ, Kim YD, Seo HO. Mesoporous SiO2 particles combined with Fe oxide nanoparticles as a regenerative methylene blue adsorbent. ACS Omega. 2019;4(6):9745–55. https://doi.org/10.1021/acsomega.9b00726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao Y, Choudhury NR, Dutta N, Shanks R, Weiss R. Effect of the ionic aggregation on the crystallisation behavior of poly(ethylene) part of ionome. J Therm Anal Calorim. 2003;73(1):361–80. https://doi.org/10.1023/A:1025178818103.

    Article  CAS  Google Scholar 

  53. Pielichowski K, Flejtuch K. Phase behavior of poly(ethylene oxide) studied by modulated-temperature DSC—influence of the molecular weight. J Macromol Sci Phys. 2004;43(2):459–70. https://doi.org/10.1081/MB-120029781.

    Article  CAS  Google Scholar 

  54. Khatiwada BK, Hetayothin B, Blum FD. Thermal properties of PMMA on silica using temperature-modulated differential scanning calorimetr. Macromol Symp. 2013;327(1):20–8. https://doi.org/10.1002/MASY.201350502.

    Article  CAS  Google Scholar 

  55. Solarski S, Ferreira M, Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer. 2005;46(25):11187–92. https://doi.org/10.1016/j.polymer.2005.10.027.

    Article  CAS  Google Scholar 

  56. de Almeida SH, Kawano Y. Thermal behavior of Nafion membranes. J Therm Anal Calorim. 1999;58(3):569–77. https://doi.org/10.1023/A:1010196226309.

    Article  Google Scholar 

  57. Di Noto V, Gliubizzi R, Negro E, Pace G. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. J Phys Chem B. 2006;110(49):24972–86. https://doi.org/10.1021/jp0650331.

    Article  CAS  PubMed  Google Scholar 

  58. Pflipsen C, Forge D, Benali S, Gossuin Y. Improved stability and relaxivity of a commercial magnetic ferrofluid. J Phys Chem C. 2013;117(40):20919–26. https://doi.org/10.1021/jp4050786.

    Article  CAS  Google Scholar 

  59. Jiemsakul T, Manakasettharn S, Kanharattanachai S, Wanna Y, Wangsuya S, Pratontep S. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: effects of aggregate length and nanoparticle sizes. J Magn Magn Mater. 2017;422:434–9. https://doi.org/10.1016/j.jmmm.2016.09.040.

    Article  CAS  Google Scholar 

  60. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321(10):1509–13. https://doi.org/10.1016/J.JMMM.2009.02.075.

    Article  CAS  Google Scholar 

  61. Vasquez ES, Chu IW, Walters KB. Janus magnetic nanoparticles with a bicompartmental polymer brush prepared using electrostatic adsorption to facilitate toposelective surface-initiated ATRP. Langmuir. 2014;30(23):6858–66. https://doi.org/10.1021/la500824r.

    Article  CAS  PubMed  Google Scholar 

  62. SiMAG-Basic. http://www.chemicell.com/products/microparticles/simag-basic/index.html. 2019. Accessed 10 Jan 2019.

  63. Georgieva JV, Kalicharan D, Couraud P-O, Romero IA, Weksler B, Hoekstra D, et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol Ther. 2011;19(2):318–25. https://doi.org/10.1038/mt.2010.236.

    Article  CAS  PubMed  Google Scholar 

  64. Okhrimenko DV, Budi A, Ceccato M, Cárdenas M, Johansson DB, Lybye D, et al. Hydrolytic stability of 3-aminopropylsilane coupling agent on silica and silicate surfaces at elevated temperatures. ACS Appl Mater Interfaces. 2017;9(9):8344–53. https://doi.org/10.1021/acsami.6b14343.

    Article  CAS  PubMed  Google Scholar 

  65. Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc D-A. Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol. 2014;27(12):2023–35. https://doi.org/10.1021/tx500231f.

    Article  CAS  PubMed  Google Scholar 

  66. Shen X-C, Fang X-Z, Zhou Y-H, Liang H. Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles. Chem Lett. 2004;33(11):1468–9.

    Article  CAS  Google Scholar 

  67. Mahdieh A, Mahdavian AR, Salehi-Mobarakeh H. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization. J Magn Magn Mater. 2017;426:230–8. https://doi.org/10.1016/j.jmmm.2016.11.091.

    Article  CAS  Google Scholar 

  68. Maddumaarachchi M, Blum FD. Thermal analysis and FT-IR studies of adsorbed poly(ethylene-stat-vinyl acetate) on silica. J Polym Sci Part B Polym Phys. 2014;52(10):727–36. https://doi.org/10.1002/polb.23476.

    Article  CAS  Google Scholar 

  69. Yi L, Heitmann J, Scholz R, Zacharias M. Phase separation of thin SiO layers in amorphous SiO/SiO2 superlattices during annealing. J Phys Condens Matter. 2003;15(39):S2887.

    Article  CAS  Google Scholar 

  70. Piasek Z, Urbanski T. The infra-red absorption spectrum and structure of urea. Bull Pol Acad Sci Technol X. 1962;5:113–20.

    Google Scholar 

  71. Pasternack RM, Rivillon Amy S, Chabal YJ. Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir. 2008;24(22):12963–71. https://doi.org/10.1021/la8024827.

    Article  CAS  PubMed  Google Scholar 

  72. Phan NTS, Jones CW. Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: an alternative to functionalized porous silica catalysts. J Mol Catal A Chem. 2006;253(1–2):123–31. https://doi.org/10.1016/j.molcata.2006.03.019.

    Article  CAS  Google Scholar 

  73. Lummerstorfer T, Sohar C, Friedbacher G, Hoffmann H. In situ observation of interfacial bonding of an organic monolayer confined between two solid surfaces. Langmuir. 2006;22(1):18–21. https://doi.org/10.1021/la052307n.

    Article  CAS  PubMed  Google Scholar 

  74. Chiang C-H, Ishida H, Koenig JL. The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci. 1980;74(2):396–404. https://doi.org/10.1016/0021-9797(80)90209-X.

    Article  CAS  Google Scholar 

  75. Chiang C-H, Koenig JL. Fourier transform infrared spectroscopic study of the adsorption of multiple amino silane coupling agents on glass surfaces. J Colloid Interface Sci. 1981;83(2):361–70. https://doi.org/10.1016/0021-9797(81)90331-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funds for this work were provided by the National Science Foundation (CBET-1720370, CBET-1403872, CBET-0923474, DBI-1126743).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erick S. Vasquez or Keisha B. Walters.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasquez, E.S., Prehn, E.M. & Walters, K.B. Assessing magnetic iron oxide nanoparticle properties under different thermal treatments. J Therm Anal Calorim 143, 35–46 (2021). https://doi.org/10.1007/s10973-019-09195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09195-4

Keywords

Navigation