Skip to main content
Log in

Machine learning methods for precise calculation of temperature drop during a throttling process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is vital for the designers of the throttling facilities to predict natural gas temperature drop along a throttling valve exactly. Generally, direct prediction of the temperature drop is not possible even by employing equations of states. In this work, artificial neural network method, specifically multilayer perceptron, is utilized to predict the physical properties of natural gas. Then, the method is employed for direct calculation of the temperature drop along a throttling process. To train, validate and test the network, a large database of natural gas fields of Iran plus some experimental data (30,000 random datasets) are gathered from the literature. In addition, according to complexity of the multilayer perceptron model, a group method of data handling approach is used to simplify the major trained network. For the first time, an equation is developed for calculating natural gas temperature drop as a function of molecular weight as well as pressure drop. The results show that the multilayer perceptron and group method of data handling methods have the error R2 = 0.998 and R2 = 0.997, respectively. In addition, the results indicate that both developed machine learning methods present a high accuracy in the calculations over a wide range of gas mixtures and input properties ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

f :

Activation function

T :

Temperature (K)

P :

Pressure (kPa)

J :

Jacobian matrix

Z :

Z-factor

X :

Mole fraction

v :

Gas volume

R :

Gas constant (J K−1 mol−1)

α :

Helmholtz free energy

δ :

Reduced fluid mixture

\(\beta_{{{\text{v,ij}}}} ,\gamma_{{{\text{T,ij}}}} ,\beta_{{{\text{T,ij}}}} ,\gamma_{{{\text{T,ij}}}}\) :

Binary mixtures parameters of GERG2008 EOS

\(\alpha^{0}\) :

Helmholtz free energy ideal part of gas mixture

\(\alpha_{0i}^{0}\) :

Ideal dimensionless Helmholtz free energy of the component i of GERG2008 EOS

\(n_{\rm ij,k} ,d_{\rm ij,k} ,t_{\rm ij,k} ,\eta_{\rm ij,k} ,\varepsilon_{\rm ij,k} ,\beta_{\rm ij,k} ,\gamma_{\rm ij,k}\) :

Parameters of GERG2008 EOS

\(\alpha^{\text{r}}\) :

Reduced Helmholtz free energy residual part

\(\rho\) :

Density

\(\tau\) :

Inverse reduced temperature (1/K)

\(\alpha_{\text{or}}^{\text{r}}\) :

Generalized departure function

\(\omega_{\rm i}\) :

Acentric factor of component i

\(a,b,a_{\rm i} ,b_{\rm i} ,a_{\rm ii} ,b_{\rm ii} ,a_{\rm ij} ,b_{\rm ij} ,k_{\rm ij} ,m_{\rm i} ,\alpha_{\rm i}\) :

Mixing rules parameters of cubic EOSs

n :

Number of data points

R :

Correlation coefficient

N :

Number of natural gas components, N = 21

\(P_{{{\text{c,i}}}}\) :

Critical pressure for component i

\(T_{{{\text{c,i}}}}\) :

Critical temperature for component i

\(P_{\text{pc}}\) :

Pseudo-critical pressure, \(P_{\text{pc}} = \sum\nolimits_{i = 1}^{N} P_{{{\text{c,i}}}} \times X_{\rm i}\)

\(T_{\text{pc}}\) :

Pseudo-critical temperature, \(T_{\text{pc}} = \sum\nolimits_{i = 1}^{N} T_{{{\text{c,i}}}} \times X_{\rm i}\)

\(P_{\text{pr}}\) :

Pseudo-reduced pressure, \(P_{\text{pr}} = \frac{P}{{P_{\text{pc}} }}\)

\(T_{\text{pr}}\) :

Pseudo-reduced temperature, \(T_{\text{pr}} = \frac{T}{{T_{\text{pc}} }}\)

W :

Weights matrix

c:

Critical point

r:

Reduced

AAPD:

Average absolute percent deviation

ANN:

Artificial neural network

EOS:

Equations of state

GMDH:

Group method of data handling

HFE:

Helmholtz free energy

JT:

Joule–Thomson

NG:

Natural gas

MLP:

Multilayer perceptron

References

  1. Cengel YA, Boles MA. Thermodyamics an engineering approach. New York: McGraw-Hill; 2002.

    Google Scholar 

  2. Sloan ED, Koh CA. Clathrate hydrates of natural gases, third edition. Clathrate Hydrates of Natural Gases. 2007.

  3. Parvizi S, Arabkoohsar A, Farzaneh-Gord M. Natural gas compositions variation effect on capillary tube thermal mass flow meter performance. Flow Meas Instrum. 2016;50:229–36.

    Article  Google Scholar 

  4. Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004. J Chem Eng Data. 2012;57:3032–91.

    Article  CAS  Google Scholar 

  5. AGA8-DC92 EoS. Compressibility and super compressibility for natural gas and other hydrocarbon gases. Trans Meas Commun Rep 1992.

  6. Ahmadi P, Chapoy A, Tohidi B. Density, speed of sound and derived thermodynamic properties of a synthetic natural gas. J Nat Gas Sci Eng. 2017;40:249–66.

    Article  CAS  Google Scholar 

  7. Dranchuk PM, Abou-Kassem JH. Calculation of Z factors for natural gases using equations of state. J Can Pet Technol. 1975;14:34–6.

    Google Scholar 

  8. Londono FE, Archer RA, Blasingame TA. Correlations for hydrocarbon-gas viscosity and gas density-validation and correlation of behavior using a large-scale database. SPE Reserv Eval Eng. 2005;8:561–72.

    Article  CAS  Google Scholar 

  9. AlQuraishi AA, Shokir EM. Viscosity and density correlations for hydrocarbon gases and pure and impure gas mixtures. Pet Sci Technol. 2009;27:1674–89.

    Article  CAS  Google Scholar 

  10. Farzaneh-Gord M, Rahbari HR. Developing novel correlations for calculating natural gas thermodynamic properties. Chem Process Eng: Inz Chem I Process. 2011;32:435–52.

    Article  CAS  Google Scholar 

  11. Farzaneh-Gord M, Farsiani M, Khosravi A, Arabkoohsar A, Dashti F. A novel method for calculating natural gas density based on Joule Thomson coefficient. J Nat Gas Sci Eng. 2015;26:1018–29.

    Article  Google Scholar 

  12. Farzaneh-Gord M, Arabkoohsar A, Koury RNN. Novel natural gas molecular weight calculator equation as a functional of only temperature, pressure and sound speed. J Nat Gas Sci Eng. 2016;30:195–204.

    Article  Google Scholar 

  13. Cao W, Wang X, Ming Z, Gao J. A review on neural networks with random weights. Neurocomputing. 2018;275:278–87.

    Article  Google Scholar 

  14. Gill J, Singh J, Ohunakin OS, Adelekan DS. Component-wise exergy analysis using adaptive neuro-fuzzy inference system in vapor compression refrigeration system. J Therm Anal Calorim. 2019;136:2111–23.

    Article  CAS  Google Scholar 

  15. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;138:827–43.

    CAS  Google Scholar 

  16. Ahmadpour J, Ahmadi M, Javdani A. Hydrodesulfurization unit for natural gas condensate. J Therm Anal Calorim. 2019;135:1943–9.

    Article  CAS  Google Scholar 

  17. Ahmadi MH, Tatar A, Seifaddini P, Ghazvini M, Ghasempour R, Sheremet MA. Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches. Numer Heat Transf Part A Appl. 2018;74:1301–22.

    Article  CAS  Google Scholar 

  18. Baghban A, Pourfayaz F, Ahmadi MH, Kasaeian A, Pourkiaei SM, Lorenzini G. Connectionist intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional channels. J Therm Anal Calorim. 2018;132:1213–39.

    Article  CAS  Google Scholar 

  19. Maddah H, Aghayari R, Ahmadi MH, Rahimzadeh M, Ghasemi N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10W 40/SAE 85W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018;134:2275–86.

    Article  CAS  Google Scholar 

  20. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2019;137:307–16.

    Article  CAS  Google Scholar 

  21. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135:271–81.

    Article  CAS  Google Scholar 

  22. Bagheri H, Behrang M, Assareh E, Izadi M, Sheremet MA. Free convection of hybrid nanofluids in a C-shaped chamber under variable heat flux and magnetic field: simulation, sensitivity analysis, and artificial neural networks. Energies. 2019;12:2807.

    Article  CAS  Google Scholar 

  23. Moghadassi AR, Nikkholgh MR, Parvizian F, Hosseini SM. Estimation of thermophysical properties of dimethyl ether as a commercial refrigerant based on artificial neural networks. Expert Syst Appl. 2010;37:7755–61.

    Article  Google Scholar 

  24. Kamyab M, Sampaio JHB, Qanbari F, Eustes AW. Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases. J Pet Sci Eng. 2010;73:248–57.

    Article  CAS  Google Scholar 

  25. Al-Anazi BD, Pazuki GR, Nikookar M, Al-Anazi AF. The prediction of the compressibility factor of sour and natural gas by an artificial neural network system. Pet Sci Technol. 2011;29:325–36.

    Article  CAS  Google Scholar 

  26. Sanjari E, Lay EN. Estimation of natural gas compressibility factors using artificial neural network approach. J Nat Gas Sci Eng. 2012;9:220–6.

    Article  Google Scholar 

  27. Mohamadi-Baghmolaei M, Azin R, Osfuri S, Mohamadi-Baghmolaei R, Zarei Z. Prediction of gas compressibility factor using intelligent models. Nat Gas Ind B. 2015;2:283–94.

    Article  Google Scholar 

  28. Azizi N, Behbahani R, Isazadeh MA. An efficient correlation for calculating compressibility factor of natural gases. J Nat Gas Chem. 2010;19:642–5.

    Article  CAS  Google Scholar 

  29. Mokhatab S, Poe WA. Handbook of natural gas transmission and processing. Burlington: Gulf Professional Publishing; 2012.

    Google Scholar 

  30. Farzaneh-Gord M, Arabkoohsar A, Deymi Dasht-bayaz M, Machado L, Koury RNN. Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renew Energy. 2014;72:258–70.

    Article  Google Scholar 

  31. ISO 20765-2—Natural gas—Calculation of thermodynamic properties—part 2: single-Phase properties (gas, liquid, and dense fluid) for extended ranges of application. 2015.

  32. Hagan T, Demuth HB, Beale MH. Neural Network Design. 2002.

  33. Kondo T. GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. Proceedings of SICE Annu Conference 1998. p. 1143–8.

  34. Ernst G, Wirbser H, Keil B, Jaeschke M. Flow-calorimetric results for the massic heat capacity cp and the Joule-Thomson coefficient of CH4 of (0.85 CH4 + 0.15 C2H6) and of a mixture similar to natural gas. J Chem Thermodyn. 2001;33:601–13.

    Article  CAS  Google Scholar 

  35. Day C, Stephan M, Oellrich LR. A new flow calorimeter for the measurement of the isobaric enthalpy increment and the isenthalpic Joule–Thomson effect. Results for methane and (methane + ethane). J Chem Thermodyn. 1997;29:949–71.

    Article  CAS  Google Scholar 

  36. National Iran Gas Company official website. Available from: http://nigc.com/pages/Products.html.

Download references

Acknowledgments

This research was partly funded by Iran National Science Foundation (INSF) under the contract no. 96004167 and Russian Foundation for Basic Research (RFBR Grant 17-58-560018). The second author would like to thank support from Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farzaneh-Gord.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh-Gord, M., Rahbari, H.R., Mohseni-Gharyehsafa, B. et al. Machine learning methods for precise calculation of temperature drop during a throttling process. J Therm Anal Calorim 140, 2765–2778 (2020). https://doi.org/10.1007/s10973-019-09029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09029-3

Keywords

Navigation