Skip to main content
Log in

DSC of natural opal: insights into the incorporation of crystallisable water in the opal microstructure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low-temperature DSC on a wide range of opal-A and opal-CT samples was carried out to estimate the proportion of crystallisable water and to determine the size of water-filled cavities. A wide range of crystallisable water contents in the range 4.9 to 41.9% of the water contained in opals were observed, although the proportion of crystallisable water did not correlate with structure. Pore size and pore size distribution were estimated from the melt temperature depression and heat flow data, respectively. Opal-CT was observed to have smaller water-filled pores (radii < 2 nm) than opal-A (radii from 2.5 to 4.9 nm), suggesting that molecular water may be contained between nanograins in the microstructural units (spheres or lepispheres). A narrower pore size distribution was calculated for opal-CT, and no melting of the crystallisable water was observed where bulk water would be expected to melt, suggesting the absence of larger voids. The melting peaks for opal-A, on the other hand, transitioned into the melting of bulk water suggesting the presence of significantly larger water-filled pores, an observation consistent with the microstructure observed in SEM micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iler RK. The occurrence, dissolution, and deposition of silica. In: The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, Wilmington; 1979, pp. 3–93

  2. Liesegang M, Milke R, Kranz C, Neusser G. Silica nanoparticle aggregation in calcite replacement reactions. Sci Rep. 2017;7:14550.

    Article  Google Scholar 

  3. Xia Y, Gates B, Yin Y, Lu Y. Monodispersed colloidal spheres: old materials with new applications. Adv Mater. 2000;4095:693–713.

    Article  Google Scholar 

  4. Gardner LR. Mechanics and kinetics of incongruent feldspar dissolution. Geology. 1983;11:418–21.

    Article  CAS  Google Scholar 

  5. Jones JB, Biddle J, Segnit ER. Opal Genesis. Nature. 1966;210:1353–4.

    Article  CAS  Google Scholar 

  6. Dehouck E, Gaudin A, Mangold N, Lajaunie L, Dauzères A, Grauby O, et al. Weathering of olivine under CO2 atmosphere: a martian perspective. Geochim Cosmochim Acta. 2014;135:170–89. https://doi.org/10.1016/j.gca.2014.03.032.

    Article  CAS  Google Scholar 

  7. Landmesser M. Mobility by metastability: silica transport and accumulation at low temperatures. Chem Der Erde Geochem. 1995;55:149–76.

    CAS  Google Scholar 

  8. Landmesser M. “Mobility by metastability” in sedimentary and agate petrology: applications. Chem Der Erde Geochem. 1998;58:1–22.

    CAS  Google Scholar 

  9. Jones JB, Segnit ER. The nature of opal I. Nomenclature and constituent phases. J Geol Soc Aust. 1971;18:57–68.

    Article  CAS  Google Scholar 

  10. Elzea JM, Rice SB. Tem and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal. Clays Clay Miner. 1996;44:492–500.

    Article  CAS  Google Scholar 

  11. Langer K, Flörke OW. Near infrared absorption spectra (4000–9000 cm−1) of opals and the role of “water” in these SiO2–nH2O minerals. Fortschr der Mineral. 1974;52:17–51.

    CAS  Google Scholar 

  12. Darragh BPJ, Gaskin AJ. The nature and origin of opal. Aust Gemol. 1966;8:5–9.

    Google Scholar 

  13. Gaillou E, Fritsch E, Aguilar-Reyes B, Rondeau B, Post J, Barreau A, et al. Common gem opal: an investigation of micro- to nano-structure. Am Mineral. 2008;93:1865–73.

    Article  CAS  Google Scholar 

  14. Fritsch E, Ostrooumov M, Rondeau B, Barreau A, Albertini D, Marie A-M, et al. Mexican gem opals: nano- and micro-structure, origin of colour, comparison with other common opals of gemmological significance. Aust Gemol. 2002;21:230–3.

    Google Scholar 

  15. Fritsch E, Gaillou E, Rondeau B, Barreau A, Albertini D, Ostroumov M. The nanostructure of fire opal. J Non Cryst Solids. 2006;352:3957–60.

    Article  CAS  Google Scholar 

  16. Jones JB, Sanders JV, Segnit ER. Structure of opal. Nature. 1964;204:990–1.

    Article  CAS  Google Scholar 

  17. Darragh PJ, Sanders JV. The origin of colour in opal. Aust Gemol. 1965;7:9–12.

    Google Scholar 

  18. Day R, Jones B. Variations in water content in opal-A and opal-CT from geyser discharge aprons. J Sediment Res. 2008;78:301–15.

    Article  CAS  Google Scholar 

  19. Jones JB, Segnit ER. Water in sphere-type opal. Mineral Mag. 1969;37:357–61.

    Article  CAS  Google Scholar 

  20. Thomas PS, Šesták J, Heide K, Fueglein E, Šimon P. Thermal properties of Australian sedimentary opals and Czech moldavites. J Therm Anal Calorim. 2010;99:861–7.

    Article  CAS  Google Scholar 

  21. Brown LD, Ray AS, Thomas PS, Guerbois JP. Thermal characteristics of Australian sedimentary opals. J Therm Anal Calorim. 2002;68:31–6.

    Article  CAS  Google Scholar 

  22. Chauviré B, Rondeau B, Mangold N. Near infrared signature of opal and chalcedony as a proxy for their structure and formation conditions. Eur J Mineral. 2017;29:409–21.

    Article  Google Scholar 

  23. Graetsch H, Flörke OW, Miehe G. The nature of water in chalcedony and opal-C from Brazilian agate geodes. Phys Chem Miner. 1985;12:300–6.

    Article  CAS  Google Scholar 

  24. Boboň M, Christy AA, Kluvanec D, Illášová L. State of water molecules and silanol groups in opal minerals: a near infrared spectroscopic study of opals from Slovakia. Phys Chem Miner. 2011;38:809–18.

    Article  Google Scholar 

  25. Smallwood AG, Thomas PS, Ray AS. Characterisation of the dehydration of Australian sedimentary and volcanic precious opal by thermal methods. J Therm Anal Calorim. 2008;92:91–5.

    CAS  Google Scholar 

  26. Smallwood AG, Thomas PS, Ray AS. The thermophysical properties of Australian opal. In: Proceedings of the 9th international congress application minerals. Bisbane, Queensland; 2008, pp. 557–65.

  27. Thomas PS, Guerbois J-P, Smallwood AG. Low temperature DSC characterisation of water in opal. J Therm Anal Calorim. 2013;113:1255–60.

    Article  CAS  Google Scholar 

  28. Rondeau B, Fritsch E, Mazzero F, Gauthier J.-P. Opal—the Craze for stability. In Color. 2011;4:2–5.

    Google Scholar 

  29. Pearson G. Role of water in cracking of opal. Aust Gemol. 1985;15:435–45.

    Google Scholar 

  30. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.

    Article  CAS  Google Scholar 

  31. Ishikiriyama K, Todoki M. Pore size distribution measurements of silica gels by means of differential scanning calorimetry. J Colloid Interface Sci. 1995;171:103–11.

    Article  CAS  Google Scholar 

  32. Brun M, Lallemand A, Quinson J-F, Eyraud C. A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.

    Article  CAS  Google Scholar 

  33. Chauviré B, Rondeau B, Mazzero F, Ayalew D. The precious opal deposit at Wegel Tena, Ethiopia: formation successive pedogenesis events. Canadian Miner. 2017;55(4):701–23.

    Article  Google Scholar 

  34. Jähnert S, Vaca Chávez F, Schaumann GE, Schreiber A, Schönhoff M, Findenegg GH. Melting and freezing of water in cylindrical silica nanopores. Phys Chem Chem Phys. 2008;10:6039–51.

    Article  Google Scholar 

  35. Endo A, Yamamoto T, Inagi Y, Iwakabe K, Ohmori T. Characterization of nonfreezable pore water in mesoporous silica by thermoporometry. J Phys Chem C. 2008;112:9034–9.

    Article  CAS  Google Scholar 

  36. Fukusako S. Thermophysical properties of ice, snow, and sea ice. Int J Thermophys. 1990;11:353–72.

    Article  CAS  Google Scholar 

  37. Segnit ER, Stevens TJ, Jones JB. The role of water in opal. J Geol Soc Aust. 1965;12:211–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Dr Eduard Gübelin Association for Research & Identification of Precious Stones supported these analyses with the Dr Eduard Gübelin Research Scholarship 2016. The authors would like to thank Jean-Pierre Guerbois for his precious assistance to the TG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Chauviré.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauviré, B., Thomas, P.S. DSC of natural opal: insights into the incorporation of crystallisable water in the opal microstructure. J Therm Anal Calorim 140, 2077–2085 (2020). https://doi.org/10.1007/s10973-019-08949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08949-4

Keywords

Navigation