Skip to main content
Log in

A new model for the rationalization of the thermal behavior of carbonated apatites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new model for the location and distribution of carbonate ions in carbonated apatite was used to assign the IR spectra of A- and AB-carbonated apatites. The percentage of total carbonate as measured by the mass loss in the TGA of these compounds is in good agreement with the percentage obtained by combustion analysis. The decomposition of pure A-type carbonate appears at temperatures of 985–1123 °C, whereas the decomposition of AB-type carbonated apatites occurs in the range of 600–800 °C. This difference is attributed to changes in the environment of channel carbonate brought about by B-type substitution of carbonate for phosphate. In the presence of sodium ions, the channel is changed by substitution of sodium for calcium in order to accommodate the difference between the charge of the carbonate and phosphate ions. A thermodynamic cycle is introduced to rationalize the differences in decomposition temperatures of A- and B-type carbonate. Preferential loss of B-type carbonate upon heating to 600 °C also suggests the migration of B-type carbonate to A-sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994. p. 389.

    Google Scholar 

  2. Fleet M. Infrared spectra of carbonate apatites: evidence for a connection between bone mineral and body fluids. Am Mineral. 2017;102:149–57.

    Article  Google Scholar 

  3. Pan Y, Fleet ME. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem. 2002;48:13–49.

    Article  CAS  Google Scholar 

  4. Bollmeyer MM, Carney MC, Yoder CH. A-type carbonate in strontium apatites. Am Mineral. 2019;104:438–46.

    Article  Google Scholar 

  5. Barralet J, Knowles JC, Best S, Bonfield W. Thermal decomposition of synthesized carbonate hydroxyapatite. J Mater Sci Mater Med. 2002;13:529–33.

    Article  CAS  Google Scholar 

  6. Lafon JP, Champion E, Bernache-Assolant D, Gilbert R, Danna AM. Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.

    Article  CAS  Google Scholar 

  7. Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2001;59:697–708.

    Article  Google Scholar 

  8. Liu Q, Matinlinna JP, Chen Z, Ning C, Ni G, Pan H, Darvell BW. Effect of thermal treatment on carbonated hydroxyapatite: morphology, composition, crystal characteristics and solubility. Ceram Int. 2015;41:6149–57.

    Article  CAS  Google Scholar 

  9. Landi E, Tampieri A, Celotti G, Vichi L, Sandri M. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials. 2004;25:1763–70.

    Article  CAS  Google Scholar 

  10. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite, thermal decomposition. J Solid State Chem. 2001;160:340–9.

    Article  CAS  Google Scholar 

  11. Yoder CH, Pasteris J, Worcester K, Schermerhorn D, Sternlieb M, Goldenberg J, Wilt Z. Dehydration and rehydration of carbonated fluor- and hydroxylapatite. Minerals. 2012;2:100–17.

    Article  CAS  Google Scholar 

  12. Trombe JC. Decomposition and reactivity of certain carbonated hydroxylapatites, Ann. Chim. 1973;251–79.

  13. Emerson WH, Fischer EE. The infra-red absorption spectra of carbonate in calcified tissues. Arch Oral Biol. 1962;7:671–83.

    Article  CAS  Google Scholar 

  14. Holcomb DW, Young RA. Thermal decomposition of human tooth enamel. Calcif Tissue Int. 1980;31:189–201.

    Article  CAS  Google Scholar 

  15. El Feki H, Khattech I, Jemal M, Rey C. Decomposition thermique d’hydroxyapatites caronatees sodees. Thermochim Acta. 1994;237:99–110.

    Article  Google Scholar 

  16. Hidouri M, Dorozhkin SV. Structure and thermal stability of sodium and carbonate-co-substituted strontium hydroxyfluorapatites. New J Chem. 2018;42:8469–77.

    Article  CAS  Google Scholar 

  17. Lempart M, Manecki M, Kwasniak-Kominek M, Matusik J, Bajda T. Accommodation of the carbonate ion in lead hydroxyl arsenate (hydroxylmimetite) Pb5(AsO4)3OH. Polyhedron. 2019;161:330–7.

    Article  CAS  Google Scholar 

  18. Yoder CH, Bollmeyer MM, Stepien KR, Dudrick RN. The effect of incorporated carbonate and sodium on the IR spectra of A-, B-, and AB-type carbonate apatites. Am Mineral. 2019;104;869–77.

  19. Fowler BO, Kuroda S. Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int. 1986;38:197–208.

    Article  CAS  Google Scholar 

  20. Barinov SM, Rau JV, Cesaro SN, Durisin J, Fadeea JV, Ferro D, Medvecky L, Trionfetti G. Carbonate release from carbonated hydroxyapatite in the wide temperature rage. J. Mater Sci: Mater Med. 2006;597–604.

  21. Peroos S, Du Z, de Leeuw NH. A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyl-apatite. Biomaterials. 2006;27:2150–61.

    Article  CAS  Google Scholar 

  22. Sudarsanan K, Young RA. Significant precision in crystal structural details: holly Springs hydroxyapatite. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem. 1969;25:1534–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Camille and Henry Dreyfus Foundation for a Senior Scientist Mentor award (CHY) and to the Lucille and William Hackman Summer Research Program and the Yoder Student Research Endowment at Franklin & Marshall College for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude H. Yoder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoder, C.H., Stepien, K.R. & Edner, T.M. A new model for the rationalization of the thermal behavior of carbonated apatites. J Therm Anal Calorim 140, 2179–2184 (2020). https://doi.org/10.1007/s10973-019-08946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08946-7

Keywords

Navigation