Skip to main content
Log in

Assessing the influence of the input variables employed by fire dynamics simulator (FDS) software to model numerically solid-phase pyrolysis of cardboard

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Understanding a material’s fire behaviour implies to know the thermal decomposition processes. Thermal analysis techniques are widely employed to study thermal decomposition processes, especially to calculate the kinetic and thermal properties. Cardboard boxes are widely employed as rack-storage commodities in industrial buildings. Hence, the characterization of the cardboard is considered a key factor for fire safety engineering, because it enables the determination of its thermal behaviour at high temperatures. The employment of mathematical or computational models for modelling the thermal decomposition processes is commonly used in fire safety engineering (FSE). The fire dynamics simulator (FDS) software is one of the most commonly used computational fluid dynamics softwares in FSE to address thermal analysis. To properly set up FDS and obtain accurate results, the numerical values of the thermal and kinetic properties are needed as input data. Owing to the large number of variables to be determined, a preliminary study is bound to be helpful, which can well assess the influence of each variable over the pyrolysis model, discarding or restricting their influence. This study, based on the Monte Carlo method, presents a sensitivity analysis for the variables utilized as input data by the FDS software. The results show the conversion factor α, i.e. the mass involved in each reaction, and the triplet kinetics have a major impact on the reproduction of the thermal decomposition process in fire computer modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s−1)

E a :

Activation energy (kJ kmol−1)

\(n_{\text{j}}\) :

Reaction order of the reaction j (–)

H r :

Heat of reaction (kJ kg−1)

r :

Reaction rate at temperature \(T_{\text{s}}\)

\(T_{\text{s}}\) :

Surface temperature (°C)

ρ :

Density (kg m−3)

C p :

Specific heat (kJ kg−1 K−1)

k :

Conductivity (W m−1 K−1)

ε :

Emissivity (–)

η :

Absorption coefficient (m−1)

\(Y_{\text{s,i}}\) :

Quotient between the density of solid material i produced by the reaction (\(\rho_{\text{s,i}}\)) at surface temperature \(T_{\text{s}}\) divided by the initial density of the solid material (\(\rho_{\text{s}} (0)\)) (–)

\(r_{\text{ij}}\) :

Reaction rate (kg s−1)

\(v_{{{\text{si}}^{\prime } {\text{j}}}}\) :

Yield produced of the material i by the reaction j

\(r_{{{\text{i}}^{\prime } {\text{j}}}}\) :

Residue produced of the material i by the reaction j

α :

Coefficient the conversion factor of reactant (–)

\(\dot{q}_{\text{s,c}}^{\prime \prime \prime }\) :

Heat release rate per unit volume produced by the chemical reaction of the sample (kJ m−3)

\(m\) :

Sample mass (kg)

M :

Reacting material

P :

Submaterial generated as product of the reaction

F :

Fuel gas released by the reaction

G :

Non-burning gas released by the reaction

R :

Residue produced by the reaction

ν p :

Amount of submaterial produced

ν f :

Amount of fuel gas released

ν g :

Amount of non-burning gas released

ν r :

Amount of residue produced

\({\text{var}}_{\text{k}}^{0}\) :

Value of the variable k of the reference case

\({\text{var}}_{\text{k}}^{0}\) :

Value of the variable k of the reference case

\({\text{var}}_{\text{k}}^{\text{mu}}\) :

Value of the variable k of the mutated case

\({\text{par}}_{\text{s}}^{0}\) :

Value of the parameter s of the reference case

\({\text{par}}_{\text{s}}^{\text{mu}}\) :

Value of the parameter s of the mutated case

\({\text{in}}_{\text{k}}^{\text{s}}\) :

Value of influence of variable k over parameter s

TG:

Thermogravimetric analysis curve

DTG:

Derivative thermogravimetric analysis curve

MLR:

Mass loss rate

DSC:

Differential scanning calorimetry

STA:

Simultaneous thermal analysis

MSE:

Mean squared error

References

  1. ASTM-E1131-08. Standard test method for compositional analysis by thermogravimetry. ASTM International; 2014.

  2. ASTM D3418-15. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International; 2015.

  3. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355(1–2):35–42.

    Article  CAS  Google Scholar 

  4. Lázaro D, Lázaro M, Alonso A, Alvear D. Effects of boundary conditions variation on chemical reactions during STA measurements. In: Proceedings of the international conference research and advanced technology in fire safety. University of Cantabria; 2017.

  5. Comesaña R, Gómez MA, Álvarez MA, Eguía P. Thermal lag analysis on a simulated TGA–DSC device. Thermochim Acta. 2012;547:13–21.

    Article  CAS  Google Scholar 

  6. Lautenberger C, Fernandez-Pello AC. Generalized pyrolysis model for combustible solids. Fire Saf J. 2009;44(6):819–39.

    Article  CAS  Google Scholar 

  7. Stoliarov S, Lyon R. Thermo-kinetic model of burning for pyrolyzing materials. Fire Saf Sci. 2008;9:1141–52.

    Article  Google Scholar 

  8. Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst. 2011;33(2):2599–606.

    Article  CAS  Google Scholar 

  9. Snegirev AY, Talalov VA, Stepanov VV, Harris JN. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J. 2013;59:132–50.

    Article  CAS  Google Scholar 

  10. McGrattan K, Hostikka S, McDermott R, Floyd J, Vanella M. Fire dynamics simulator technical reference guide. In: NIST special publication 1018-1, vol 1, 6th edn; 2018.

  11. Matala A, Hostikka S, Mangs J. Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. Fire Saf Sci. 2008;9:1213–23.

    Article  Google Scholar 

  12. Matala A, Lautenberger C, Hostikka S. Generalized direct method for pyrolysis kinetic parameter estimation and comparison to existing methods. J Fire Sci. 2012;30(4):339–56.

    Article  Google Scholar 

  13. Dhurandher BK, Kumar R, Dhiman AK, Gupta A. Investigation of thermal equilibrium in a compartment involving crib fire. J Therm Anal Calorim. 2017;129(3):1787–97.

    Article  CAS  Google Scholar 

  14. Zhang S, Ni X, Zhao M, Feng J, Zhang R. Numerical simulation of wood crib fire behavior in a confined space using cone calorimeter data. J Therm Anal Calorim. 2014;119(3):2291–303.

    Article  CAS  Google Scholar 

  15. Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494.

    Article  CAS  Google Scholar 

  16. Ferreira BDL, Araújo NRS, Ligório RF, Pujatti FJP, Mussel WN, Yoshida MI, Sebastião RCO. Kinetic thermal decomposition studies of thalidomide under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2018;134(1):773–82.

    Article  CAS  Google Scholar 

  17. Ganeshan G, Shadangi KP, Mohanty K. Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. J Therm Anal Calorim. 2017;131(2):1803–16.

    Article  CAS  Google Scholar 

  18. Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA, Zhuravkov SP. The oxidation kinetic study of mechanically milled ultrafine iron powders by thermogravimetric analysis. J Therm Anal Calorim. 2018;134(1):307–12.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  20. Hasalová L, Ira J, Jahoda M. Practical observations on the use of Shuffled Complex Evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. Fire Saf J. 2016;80:71–82.

    Article  CAS  Google Scholar 

  21. Zhou X, Lin H. Local sensitivity analysis. In: Shekhar S, Xiong H, Zhou X, editors. Encyclopedia of GIS. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-17885-1.

    Chapter  Google Scholar 

  22. Iooss B, Lemaître P. A review on global sensitivity analysis methods. In: Operations research/computer science interfaces series; 2015.

  23. Atherton RW, Schainker RB, Ducot ER. On the statistical sensitivity analysis of models for chemical kinetics. AIChE J. 1975;21(3):441–8.

    Article  CAS  Google Scholar 

  24. Koda M, Mcrae GJ, Seinfeld JH. Automatic sensitivity analysis of kinetic mechanisms. Int J Chem Kinet. 1979;11(4):427–44.

    Article  CAS  Google Scholar 

  25. Rabitz H, Kramer M, Dacol D. Sensitivity analysis in chemical kinetics. Annu Rev Phys Chem. 1983;34(1):419–61.

    Article  CAS  Google Scholar 

  26. Monti D. Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J Catal. 1983;83(2):323–35.

    Article  CAS  Google Scholar 

  27. Turányi T. Sensitivity analysis of complex kinetic systems. Tools and applications. J Math Chem. 1990;5(3):203–48.

    Article  Google Scholar 

  28. Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev. 2005;105(7):2811–28.

    Article  CAS  PubMed  Google Scholar 

  29. Santos KG, Lobato FS, Lira TS, Murata VV, Barrozo MAS. Sensitivity analysis applied to independent parallel reaction model for pyrolysis of bagasse. ChERD. 2012;90(11):1989–96.

    CAS  Google Scholar 

  30. Batiot B, Rogaume T, Collin A, Richard F, Luche J. Sensitivity and uncertainty analysis of Arrhenius parameters in order to describe the kinetic of solid thermal degradation during fire phenomena. Fire Saf J. 2016;2016(82):76–90.

    Article  CAS  Google Scholar 

  31. Capote JA, Alvear D, Lázaro M, Puente E, Borowiec P. Sensitivity analysis in the pyrolysis models GPYRO and FDS. In: Proceedings of 12th international conference and exhibition. Fire and materials. 2011; p. 545–8.

  32. Suard S, Hostikka S, Baccou J. Sensitivity analysis of fire models using a fractional factorial design. Fire Saf J. 2013;62:115–24.

    Article  CAS  Google Scholar 

  33. Zhao G, Beji T, Merci B, Zeinali D. Numerical study on the influence of in-depth radiation in the pyrolysis of medium density fibreboard. In: Proceedings of the fire and materials conference; 2017.

  34. Yáñez R, Alonso J, Parajó J. Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochem. 2004;39(11):1543–51.

    Article  CAS  Google Scholar 

  35. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.

    Article  CAS  Google Scholar 

  36. Alonso A, Puente E, Lázaro P, Lázaro D, Alvear D. Experimental review of oxygen content at mixing layer in cone calorimeter. J Therm Anal Calorim. 2017;129(2):639–54.

    Article  CAS  Google Scholar 

  37. Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta. 1996;1996(282–283):13–27.

    Article  Google Scholar 

  38. McKinnon MB, Stoliarov SI, Witkowski A. Development of a pyrolysis model for corrugated cardboard. Combust Flame. 2013;160(11):2595–607.

    Article  CAS  Google Scholar 

  39. Lázaro D, Puente E, Peña J, Alvear D. Gypsum board failure model based on cardboard behaviour. Fire Mater. 2017;42(2):221–33.

    Article  CAS  Google Scholar 

  40. Gupta AK, M-uacute P. Pyrolysis of paper and cardboard in inert and oxidative environments. J Propul Power. 1999;15(2):187–94.

    Article  CAS  Google Scholar 

  41. Antal MJJ, Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res. 1995;34(3):703–17.

    Article  CAS  Google Scholar 

  42. Bradbury AGW, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose. J Appl Polym Sci. 1979;23(11):3271–80.

    Article  CAS  Google Scholar 

  43. David C, Salvador S, Dirion JL, Quintard M. Determination of a reaction scheme for cardboard thermal degradation using thermal gravimetric analysis. J Anal Appl Pyrolysis. 2003;67(2):307–23.

    Article  CAS  Google Scholar 

  44. Bal N, Rein G. On the effect of inverse modelling and compensation effects in computational pyrolysis for fire scenarios. Fire Saf J. 2015;72:68–76.

    Article  CAS  Google Scholar 

  45. Li J, Stoliarov SI. Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym Degrad Stab. 2014;2014(106):2–15.

    Article  CAS  Google Scholar 

  46. Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresour Technol. 2016;200:658–65.

    Article  CAS  PubMed  Google Scholar 

  47. Rein G, Lautenberger C, Fernandez-Pello AC, Torero J, Urban D. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2016;146(1–2):95–108.

    Google Scholar 

  48. Capote J, Alvear D, Abreu O, Lázaro M, Puente E. Pyrolysis characterization of a lineal low density polyethylene. Fire Saf Sci. 2011;10:877–88.

    Article  Google Scholar 

  49. Lautenberger C, Rein G, Fernandez-Pello AC. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41(3):204–14.

    Article  Google Scholar 

  50. Webster RD. Pyrolysis model parameter optimization using a customized stochastic hill-climber algorithm and bench scale fire test data. Doctoral dissertation, Digital Repository at the University of Maryland; 2009.

  51. Rein G, Lautenberger C, Fernandez-Pello AC. Using genetic algorithms to derive the parameters of solid-phase combustion from experiments. In: 20th International colloquium on the dynamics of explosions and reactive systems; 2005.

  52. Lautenberger C, Kim E, Dembsey N, Fernandez-Pello AC. The role of decomposition kinetics in pyrolysis modeling-application to a fire retardant polyester composite. Fire Saf Sci. 2008;9:1201–12.

    Article  Google Scholar 

  53. Webster R, Lázaro M, Alvear D, Capote J, Trouvé, A. Limitations in current parameter estimation techniques for pyrolysis modeling. In: 6th Fire and explosion hazards seminar (FEH6); 2010.

  54. Ding Y, Ezekoye OA, Zhang J, Wang C, Lu S. The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel. 2018;232:147–53.

    Article  CAS  Google Scholar 

  55. Duan Q. A global optimization strategy for efficient and effective calibration of hydrologic models. Doctoral dissertation. University of Arizona; 1991.

  56. Lautenberger C, Fernandez-Pello AC. Optimization algorithms for material pyrolysis property estimation. Fire Saf Sci. 2011;10:751–64.

    Article  Google Scholar 

  57. Hammersley JM, Handscomb DC. Conditional Monte Carlo. In: Monte Carlo methods. Springer; 1964. p. 76–84.

Download references

Acknowledgements

Authors would like to thank to the Consejo de Seguridad Nuclear for the cooperation and co-financing the project “Simulation of fires in nuclear power plants” and to CAFESTO Project funded by FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto RTC-2017-6066-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Alonso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, A., Lázaro, M., Lázaro, P. et al. Assessing the influence of the input variables employed by fire dynamics simulator (FDS) software to model numerically solid-phase pyrolysis of cardboard. J Therm Anal Calorim 140, 263–273 (2020). https://doi.org/10.1007/s10973-019-08804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08804-6

Keywords

Navigation