Skip to main content
Log in

Triple-objective optimization of a double-tube heat exchanger with elliptic cross section in the presence TiO2 nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper deals with numerical simulation and triple-objective optimization of a double-tube heat exchanger equipped with an elliptic cross section in the presence of TiO2 nanofluid. A CFD simulation is done to find the thermal, fluid flow, and entropy generation behavior of suggested heat exchanger configuration. The results indicate that the change of geometrical and operational parameters has different influences on the suggested heat exchanger performance. Findings show that increasing the Reynolds number from 10,000 to 50,000 with TiO2 concentration of 0.3% results in increasing overall heat transfer coefficient from 9445.8 to 14,622 W m−2 K−1 for the spiral diameter of 220 mm. The results of specific entropy generation infer that in the Reynolds number of 4000 with changing TiO2 particle concentration from 0 (pure water) to 0.3%, the specific entropy generation increases from 0.97 to 1.209 kJ kg−1 K−1. A triple-objective optimization with overall heat transfer, friction factor, and specific entropy generation as objective functions, and nanoparticle concentration, Reynolds number, and spiral diameter as decision variables, is done. Different states regarding three objectives introduces as optimum studied system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area of joint wall between two fluid (m2)

a :

Half a large ellipse diameter (m)

b :

Half a small ellipse diameter (m)

d :

Diameter (m)

D :

Spiral diameter (m)

f :

Friction coefficient

h :

Heat transfer coefficient (W m−2 K−1)

I :

Turbulent intensity

k :

Thermal conductivity (W m−1 K−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu :

Nusselt number

Q :

Heat transfer between two fluids (W)

Re :

Reynolds number

S :

Spiral pitch (m)

\(\dot{S}_{\text{gen}}^{\prime }\) :

Entropy generation rate per unit of length

T :

Temperature (K)

T LMTD :

Logarithmic mean temperature difference

U :

Overall heat transfer coefficient (W m−2 K−1)

u :

Velocity component in flow direction (m s−1)

V :

Velocity (m s−1)

δ :

Curvature ratio, d = dh/D

μ :

Viscosity (mPa s)

ρ :

Density (kg m−3)

φ :

Nanoparticle volume concentration

ave:

Average

bf:

Base fluid

h:

Hydraulic

in:

Inlet

nf:

Nanofluid

np:

Nanoparticle

out:

Outlet

w:

Water

References

  1. Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 1995. vol. 66, p. 99–105.

  2. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  3. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131:2975–91.

    Article  CAS  Google Scholar 

  4. Abasi Varzaneh A, Toghraie D, Karimipour A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08381-8.

    Article  Google Scholar 

  5. Hosseinnezhad R, Akbari OA, Hassanzadeh Afrouzi H, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;13:741–59.

    Article  Google Scholar 

  6. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131:1757–66.

    Article  CAS  Google Scholar 

  7. Bejan A, Moran MJ. Thermal design and optimization. Hoboken: Wiley; 1996.

    Google Scholar 

  8. Sahiti N, Krasniqi F, Fejzullahu X, Bunjaku J, Muriqi A. Entropy generation minimization of a double-pipe pin fin heat exchanger. Appl Therm Eng. 2008;28:2337–44.

    Article  CAS  Google Scholar 

  9. Falahat A, Vosough A. Effect of nanofluid on entropy generation and pumping power in coiled tube. J Thermophys Heat Transf. 2012;26:141–6.

    Article  CAS  Google Scholar 

  10. Leong KY, Saidur R, Khairulmaini M, Michael Z, Kamyar A. Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids. Int Commun Heat Mass Transf. 2012;39:838–43.

    Article  CAS  Google Scholar 

  11. Hemmat Esfe M, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.

    Article  CAS  Google Scholar 

  12. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows: model development and validation. Comput. Fluids. 1995;24:227–38.

    Article  Google Scholar 

  13. Zadeh AD, Toghraie D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim. 2018;131:1449–61.

    Article  CAS  Google Scholar 

  14. Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.

    Article  CAS  Google Scholar 

  15. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  16. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48:1486–93.

    Article  CAS  Google Scholar 

  17. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49:1536–46.

    Article  CAS  Google Scholar 

  18. Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53:4607–18.

    Article  CAS  Google Scholar 

  19. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  20. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2009.

    Google Scholar 

  21. Khairul MA, Saidur R, Rahman MM, Alim MA, Hossain A, Abdin Z. Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. Int J Heat Mass Transf. 2013;67:398–403.

    Article  CAS  Google Scholar 

  22. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79:1191–218.

    Article  CAS  Google Scholar 

  23. Devireddy S, Mekala CSR, Veeredhi VR. Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;78:121–6.

    Article  CAS  Google Scholar 

  24. Ahmed SA, Ozkaymak M, Sözen A, Menlik T, Fahed A. Improving car radiator performance by using TiO2-water nanofluid. Eng Sci Technol Int J. 2018;21:996–1005.

    Article  Google Scholar 

  25. Aly WIA. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers Manag. 2014;79:304–16.

    Article  CAS  Google Scholar 

  26. Khanmohammadi S, Goodarzi M, Khanmohammadi S, Ganjehsarabi H. Thermoeconomic modeling and multi-objective evolutionary-based optimization of a modified transcritical CO2 refrigeration cycle. Therm Sci Eng Prog. 2018;5:86–96.

    Article  Google Scholar 

  27. Khanmohammadi S, Atashkari K, Kamali RK. Performance assessment and multi-objective optimization of a trigeneration system with a modified biomass gasification model. Modares Mech Eng J. 2015;15:209–22.

    Google Scholar 

  28. Khaki M, Shahsavar A, Khanmohammadi S. Scenario-based multi-objective optimization of an air-based building-integrated photovoltaic/thermal system. J Sol Energy Eng Trans ASME. 2018;140:011003.

    Article  Google Scholar 

  29. Khanmohammadi S, Saadat-Targhi M, Alrashed A, Afrand M. Thermodynamic and economic analyses and multi-objective optimization of harvesting waste heat from a biomass gasifier integrated system by thermoelectric generator. Energy Convers Manag. 2019;195:1022–34.

    Article  Google Scholar 

  30. Saadat-Targhi M, Khanmohammadi S. Energy and exergy analysis and multi-criteria optimization of an integrated city gate station with organic Rankine flash cycle and thermoelectric generator. Appl Therm Eng. 2019;149:312–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, S., Rahimi, Z., Khanmohammadi, S. et al. Triple-objective optimization of a double-tube heat exchanger with elliptic cross section in the presence TiO2 nanofluid. J Therm Anal Calorim 140, 477–488 (2020). https://doi.org/10.1007/s10973-019-08744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08744-1

Keywords

Navigation