Skip to main content
Log in

Loading of 5-aminosalicylic in solid lipid microparticles (SLM)

Solubility screening of lipid excipients and physicochemical characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

5-Aminosalicylic acid (5-ASA), the active moiety of sulphasalazine, is the most commonly used drug for treating patients with inflammatory bowel disease (IBD). Its bioavailability is low, i.e. 20–30% upon oral administration and 10–35% by rectal administration. As the extent of 5-ASA absorption is very much dependent on the time-length, the drug is retained in the colon, a way to increase drug retention is the use of orally administered sustained released formulations. Solid lipid microparticles (SLM) are a viable option for site-specific targeted delivery in compressed tablets produced by direct compaction. In this study, we describe the development and characterization of 5-ASA-loaded SLM for sustained release. The solubility of 5-ASA in different types of solid lipids (e.g. cetyl palmitate, cetyl alcohol, and cetearyl alcohol) was evaluated to select the best lipid as the inert matrix-forming agent to control the release of the drug. SLM dispersions were prepared using the hot emulsification method employing the selected solid lipid, lecithin (Lipoid®) as surfactant, dimethyl sulphoxide, and acetone stabilized with Arlacel®. The characterization was performed by differential scanning calorimetry, thermogravimetric analysis, wide-angle x-ray diffraction, Fourier transform infrared spectroscopy measurements, optical microscopy, and scanning electron microscopy. Results show that the best lipid for dissolving the 5-ASA was cetyl palmitate and that the melting process did not affect the chemical stability of the materials. The thermal analysis suggests that 5-ASA was successfully encapsulated with the microparticles, of spherical shape and uniform size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scalia S, Young PM, Traini D. Solid lipid microparticles as an approach to drug delivery. Expert Opin Drug Deliv. 2015;12(4):583–99.

    Article  CAS  Google Scholar 

  2. Campos JR, Fernandes AR, Sousa R, Fangueiro JF, Boonme P, Garcia ML, et al. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. Pharm Dev Technol. 2019;24(5):616–22. https://doi.org/10.1080/10837450.2018.1549075.

    Article  CAS  PubMed  Google Scholar 

  3. Souto EB, Doktorovova S, Campos JR, Martins-Lopes P, Silva AM. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur J Pharm Sci. 2019;128:27–35. https://doi.org/10.1016/j.ejps.2018.11.022.

    Article  CAS  PubMed  Google Scholar 

  4. Cho CH, Min JH, Hwang KM, Park ES. Development of sustained-release microparticles containing tamsulosin HCl for orally disintegrating tablet using melt-adsorption method. Drug Deliv Transl Res. 2018;8(3):552–64. https://doi.org/10.1007/s13346-018-0477-9.

    Article  CAS  PubMed  Google Scholar 

  5. Campos E, Branquinho J, Carreira AS, Carvalho A, Coimbra P, Ferreira P, et al. Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J. 2013;49(8):2005–21.

    Article  CAS  Google Scholar 

  6. Gomes GVL, Borrin TR, Cardoso LO, Souto E, Pinho SC. Characterization and shelf life of β-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Braz Arch Biol Technol. 2013;56(4):663–71. https://doi.org/10.1590/s1516-89132013000400017.

    Article  CAS  Google Scholar 

  7. Doktorovova S, Kovacevic AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–52. https://doi.org/10.1016/j.ejpb.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  8. Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87(1):1–18. https://doi.org/10.1016/j.ejpb.2014.02.005.

    Article  CAS  PubMed  Google Scholar 

  9. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165–96.

    Article  CAS  Google Scholar 

  10. Desreumaux P, Ghosh S. mode of action and delivery of 5-aminosalicylic acid—new evidence. Aliment Pharmacol Ther. 2006;24(s1):2–9.

    Article  CAS  Google Scholar 

  11. Trendafilova I, Szegedi Á, Yoncheva K, Shestakova P, Mihály J, Ristić A, et al. A pH dependent delivery of mesalazine from polymer coated and drug-loaded SBA-16 systems. Eur J Pharm Sci. 2016;81:75–81.

    Article  CAS  Google Scholar 

  12. Severino P, Pinho SC, Souto EB, Santana MH. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B. 2011;86(1):125–30.

    Article  CAS  Google Scholar 

  13. Severino P, Pinho SC, Souto EB, Santana MH. Crystallinity of Dynasan® 114 and Dynasan® 118 matrices for the production of stable Miglyol®-loaded nanoparticles. J Therm Anal Calorim. 2011;108(1):101–8.

    Article  Google Scholar 

  14. Souto EB, Severino P, Santana MHA, Pinho SC. Solid lipid nanoparticles: classical methods of lab production. Quim Nova. 2011;34(10):1762–9.

    CAS  Google Scholar 

  15. Severino P, de Oliveira GGG, Ferraz HG, Souto EB, Santana MHA. Preparation of gastro-resistant pellets containing chitosan microspheres for improvement of oral didanosine bioavailability. J Pharm Anal. 2012;2(3):188–92. https://doi.org/10.1016/j.jpha.2012.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167–77.

    Article  CAS  Google Scholar 

  17. Ali F, Nandi U, Trivedi M, Prakash A, Dahiya M, Sahu PL, et al. Quantitative characterization and pharmaceutical compatibility between teneligliptin and widely used excipients by using thermal and liquid chromatography tandem mass spectrometry techniques. J Therm Anal Calorim. 2018;132(1):385–96. https://doi.org/10.1007/s10973-018-6962-z.

    Article  CAS  Google Scholar 

  18. Nassar MY, El-Shahat M, Khalile S, El-Desawy M, Mohamed EA. Structure investigation of mesalazine drug using thermal analyses, mass spectrometry, DFT calculations, and NBO analysis. J Therm Anal Calorim. 2014;117(1):463–71.

    Article  CAS  Google Scholar 

  19. Dantas IL, Bastos KTS, Machado M, Galvão JG, Lima AD, Gonsalves JKMC, et al. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim. 2018;132(3):1557–66. https://doi.org/10.1007/s10973-018-7072-7.

    Article  CAS  Google Scholar 

  20. Mladenovska K, Cruaud O, Richomme P, Belamie E, Raicki R, Venier-Julienne M-C, et al. 5-ASA loaded chitosan–Ca–alginate microparticles: preparation and physicochemical characterization. Int J Pharm. 2007;345(1):59–69.

    Article  CAS  Google Scholar 

  21. Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379–402.

    Article  CAS  Google Scholar 

  22. Mura C, Nácher A, Merino V, Merino-Sanjuan M, Manconi M, Loy G, et al. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf B. 2012;94:199–205.

    Article  CAS  Google Scholar 

  23. Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283–300.

    Article  CAS  Google Scholar 

  24. Chantaburanan T, Teeranachaideekul V, Chantasart D, Jintapattanakit A, Junyaprasert VB. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J Colloid Interface Sci. 2017;504:247–56.

    Article  CAS  Google Scholar 

  25. Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–33. https://doi.org/10.1080/02652040600612439.

    Article  CAS  PubMed  Google Scholar 

  26. Ruktanonchai U, Limpakdee S, Meejoo S, Sakulkhu U, Bunyapraphatsara N, Junyaprasert V, et al. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles. Nanotechnology. 2008;19(9):095701.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico –CNPq (Processes #443238/2014-6 and #470388/2014-5) for their financial support. This work was also financed through the project M-ERA-NET/0004/2015 from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) from national funds, and co-financed by FEDER, under the Partnership Agreement PT2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliana B. Souto or Patrícia Severino.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, E.F., Rannier, L., Nalone, L. et al. Loading of 5-aminosalicylic in solid lipid microparticles (SLM). J Therm Anal Calorim 139, 1151–1159 (2020). https://doi.org/10.1007/s10973-019-08544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08544-7

Keywords

Navigation