Skip to main content
Log in

Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the hydrodynamics and heat transfer parameters of nanofluids are investigated using CFD analysis. Laminar convective heat transfer of alumina–water nanofluids with 0, 1%, and 2% volume fraction in a straight microtube heat sink under constant wall heat flux condition is studied. This work is performed in two parts. In the first part, the single-phase and two-phase approaches have been used for modeling heat transfer of pure water and alumina–water nanofluids in a straight microtube. The results of simulation are compared with the experimental data. The results showed that CFD predictions via a two-phase model show better agreement with the experimental measurements. For nanofluid with 1% concentration, the average relative error between the experimental data and CFD result based on a two-phase model is 5.85%, while for nanofluid with 2% concentration that is 2.54%. In the second part of this work, the effects of ribs through the microtube are investigated. The effect of the geometry on the Nusselt number and friction factor in the microtube is studied. We found that spiral pitch increment increases the thermal performance by an average of 19.8%. Finally, the best performance is obtained for the ribs height 1 mm and the pitch 1.5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

References

  1. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  2. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131:1106–16.

    Article  Google Scholar 

  3. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71.

    Article  Google Scholar 

  4. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    Article  CAS  Google Scholar 

  5. Arabpour JA, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  6. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131(2):1757–66.

    Article  CAS  Google Scholar 

  7. Kalteh M, Abbassi A, Saffar-Avval M, Harting J. Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Flow. 2011;32(1):107–16.

    Article  CAS  Google Scholar 

  8. Hadad K, Rahimian A, Nematollahi M. Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor. Ann Nucl Energy. 2013;60:287–94.

    Article  CAS  Google Scholar 

  9. Göktepe S, Atalık K, Ertürk H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int J Therm Sci. 2014;80:83–92.

    Article  Google Scholar 

  10. Ahmed M, Yusoff M, Ng K, Shuaib N. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Stud Therm Eng. 2015;6:77–92.

    Article  Google Scholar 

  11. Yang Y-T, Tang H-W, Zeng B-Y, Wu C-H. Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rectangular rib-grooved channel. Int Commun Heat Mass Transf. 2015;66:71–9.

    Article  Google Scholar 

  12. Valinataj-Bahnemiri P, Ramiar A, Manavi S, Mozaffari A. Heat transfer optimization of two phase modeling of nanofluid in a sinusoidal wavy channel using Artificial Bee Colony technique. Int J Eng Sci Technol. 2015;18(4):727–37.

    Article  Google Scholar 

  13. Sadaghiani AK, Yildiz M, Koşar A. Numerical modeling of convective heat transfer of thermally developing nanofluid flows in a horizontal microtube. Int J Therm Sci. 2016;109:54–69.

    Article  CAS  Google Scholar 

  14. Amani M, Amani P, Kasaeian A, Mahian O, Yan W-M. Two-phase mixture model for nanofluid turbulent flow and heat transfer: effect of heterogeneous distribution of nanoparticles. Chem Eng Sci. 2017;167:135–44.

    Article  CAS  Google Scholar 

  15. Chiam H, Azmi W, Adam N, Ariffin M. Numerical study of nanofluid heat transfer for different tube geometries—a comprehensive review on performance. Int Commun Heat Mass Transf. 2017;86:60–70.

    Article  CAS  Google Scholar 

  16. Sekrani G, Poncet S. Further investigation on laminar forced convection of nanofluid flows in a uniformly heated pipe using direct numerical simulations. Appl Sci. 2016;6(11):332.

    Article  Google Scholar 

  17. Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–759.

    Article  CAS  Google Scholar 

  18. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131(3):2975–2991.

    Article  CAS  Google Scholar 

  19. Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Physica E. 2018;96:73–84.

    Article  CAS  Google Scholar 

  20. Karbasifar B, Akbari M, Toghraie D. Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int J Heat Mass Transf. 2018;116(1):1237–1249.

    Article  CAS  Google Scholar 

  21. Toghraie D, Mahmoudi M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2019;135(1):145–159.

    Article  CAS  Google Scholar 

  22. Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134(3):2305–2315.

    Article  CAS  Google Scholar 

  23. Khodabandeh E, Bahiraei M, Mashayekhi R, Talebjedi B, Toghraie D. Thermal performance of Ag–water nanofluid in tube equipped with novel conical strip inserts using two-phase method: Geometry effects and particle migration considerations. Powder technology. 2018;338:87–100.

    Article  CAS  Google Scholar 

  24. Moraveji MK, Ardehali RM. CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int Commun Heat Mass Transf. 2013;44:157–64.

    Article  CAS  Google Scholar 

  25. Li J, Jiang Y, Yu S, Zhou F. Cooling effect of water injection on a high-temperature supersonic jet. Energies. 2015;8(11):13194–210.

    Article  Google Scholar 

  26. Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf. 2007;50(3–4):452–63.

    Article  CAS  Google Scholar 

  27. Wylie EB, Streeter VL, Suo L. Fluid transients in systems. Englewood Cliffs: Prentice Hall; 1993.

    Google Scholar 

  28. Chai L, Xia G, Zhou M, Li J, Qi J. Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Appl Therm Eng. 2013;51(1–2):880–9.

    Article  Google Scholar 

  29. Anoop K, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9–10):2189–95.

    Article  CAS  Google Scholar 

  30. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    Article  CAS  Google Scholar 

  31. Keblinski P, Phillpot S, Choi S, Eastman J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  32. Holman J. Heat transfer 1997. Process Effic [%]. 1998;20:40–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varzaneh, A.A., Toghraie, D. & Karimipour, A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim 139, 701–720 (2020). https://doi.org/10.1007/s10973-019-08381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08381-8

Keywords

Navigation