Skip to main content
Log in

Thermal oxidation process and characteristic of abietic acid and gum rosin by accelerating rate calorimeter (ARC)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oxidative characteristic of abietic acid and rosin was investigated using an accelerating rate calorimeter, and initial oxidation temperature was calculated by temperature–time (Tt) and pressure–time (Pt) plot. The result showed that the exothermic reaction does not occur when heating to 523.15 K under nitrogen atmosphere. Under oxygen atmosphere, characteristic of oxidation reaction process was found: first abietic acid or rosin absorbed oxygen, and then an exothermic oxidation reaction has occurred. The initial exothermic temperature (T0) of abietic acid and rosin oxidation reaction are 308.9 K and 308.92 K, respectively. The kinetics of abietic acid (or rosin) is a second-order reaction in initial oxidation reaction. The linear equation of abietic acid is Y = − 4316 × (1/T) + 11.83, and activation energy (Ea) is 35.88 kJ mol−1 at T = 309.50–339.44 K. The linear equation of rosin is Y = − 7111.7 × (1/T) + 21.43, and activation energy (Ea) is 59.13 kJ mol−1 at T = 309.52–331.31 K. The peroxides of primary oxidation product were analyzed by iodimetry, abietic acid and rosin peroxide concentration are 78.79 mg kg−1 and 56.96 mg kg−1, respectively, when oxidation reaction time is 8 h at 313.15 K. Therefore, oxidation reaction is easy to occur at lower temperature even at 303.15 K by iodimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pan G. Development of pyrotechnics in China. Explos Mater. 1987;1:28–30.

    Google Scholar 

  2. Zhou X, Liu Z, Lu C. The influence of rosin content on shock wave sensitivity of expanded ammonium nitrate fuel oil explosives. Blasting. 2006;23(3):11–2.

    Google Scholar 

  3. Zhang J, Zhang B. Research on improving the fluidity of modified ammonium nitrate fuel oil explosive. Explos Mater. 2011;40(3):19–21.

    CAS  Google Scholar 

  4. Lu Z, Zhang K, Ni Q, Yu Z, Tang S, Fan M. Study on storage stability of powdery emulsion explosive. Explos Mater. 2013;42(6):24–8.

    CAS  Google Scholar 

  5. Karlberg AT, Basketter D, Goosens A, Lepoittevin JP. Regulatory classification of substances oxidised to skin sensitisers on exposure to air. Contact Dermat. 1999;40:183–8.

    Article  CAS  Google Scholar 

  6. Belmonte M, Xavier C, Decap J, Martinez M, Sierra-Alvarez R, Vidal G. Improved aerobic biodegradation of abietic acid in ECF bleached kraft mill effluent due to biomass adaptation. J Hazard Mater. 2006;B135:256–63.

    Article  Google Scholar 

  7. Minn J. Determination of oxidative stability of rosin products by high-pressure differential scanning calorimetry. Thermochim Acta. 1985;91:87–94.

    Article  CAS  Google Scholar 

  8. Enoki A. Isomerization and autoxidation of resin acids. Wood Res. 1976;59(60):49–79.

    Google Scholar 

  9. Wu Z, Chen S. Study on oxidation mechanism of gum rosin under heat. Chem Ind For Prod. 2000;20(3):13–6.

    CAS  Google Scholar 

  10. Prinz S, Mullner U, Heilmann J, Winkelmann K, Sticher O, Haslinger E, Hufner A. Oxidation products of abietic acid and its methyl ester. J Nat Prod. 2002;65:1530–4.

    Article  CAS  Google Scholar 

  11. Monroe BM. Rate constants for the reaction of singlet oxygen with conjugated dienes. J Am Chem Soc. 1981;103(24):7253–6.

    Article  CAS  Google Scholar 

  12. Liu X, Qin R, Huang P, Liu J, Ma L, Li W. Oxidation reaction kinetics of abietic acid and rosin under ultraviolet light irradiation. Acta Phys Chim Sin. 2010;26(8):2115–20.

    CAS  Google Scholar 

  13. Liu J, Liu X, Li W, Ma L, Fang S. Kinetics of gum rosin oxidation under 365 nm ultraviolet irradiation. Monatsh Chem. 2014;145:209–12.

    Article  CAS  Google Scholar 

  14. Qin R, Huang P, Liu X. Studies on the kinetics of thermal oxidation of rosin and abietic acid on the polyethylene film. Chem J Chin Univ. 2009;30(5):954–8.

    CAS  Google Scholar 

  15. Ren F, Zheng Y, Liu X, Yang Q, Zhang Q, Shen F. Thermal oxidation reaction process and oxidation kinetics of abietic acid. RSC Adv. 2015;5:17123–30.

    Article  CAS  Google Scholar 

  16. Ren F, Zheng Y, Liu X, Ma L, Li W, Lai F, Liu J, Guan W. An investigation of the oxidation mechanism of abietic acid using two-dimensional infrared correlation spectroscopy. J Mol Struct. 2015;1084:236–43.

    Article  CAS  Google Scholar 

  17. Harris GC, Sanderson TF. An improved method of isolation of resin acids: the isolation of a new abietic-type 1 acid, neoabietic acid. J Am Chem Soc. 1948;70(1):334–9.

    Article  CAS  Google Scholar 

  18. Schuller WH, Lawrence RV. Air oxidation of resin acids. III. The photosensitized oxidation of neoabietic acid and the configurations of the pine gum resin acids. J Am Chem Soc. 1961;83(11):2563–70.

    Article  CAS  Google Scholar 

  19. Moore R, Lawrence RV. Air oxidation of resin acids. I. Photo-sensitized oxidation of levopimaric acid. J Am Chem Soc. 1958;80(6):1438–40.

    Article  CAS  Google Scholar 

  20. Schuller WH, Moore RN, Lawrence RV. Air oxidation of resin acids. II. The structure of palustric acid and its photosensitized oxidation. J Am Chem Soc. 1960;82(7):1734–8.

    Article  CAS  Google Scholar 

  21. Duh YS, Kao CS, Lee C. Runaway hazard assessment of cumene hydroperoxide. Trans IChemE.75, 73-80.

  22. Bhattacharya A. A general kinetic model framework for the interpretation of adiabatic calorimeter rate data. Chem Eng J. 2005;1997(110):67–78.

    Article  Google Scholar 

  23. Greaves M, Osindero A, Rathbone RR. Influence of reservoir rock and fluids on crude oil. Trans IChemE. 2000;78:715–20.

    Article  CAS  Google Scholar 

  24. Zhang G, Jin S, Li L, Li Z, Shu Q, Wang D, Zhang B, Li Y. Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG. J Therm Anal Calorim. 2016;126:1223–30.

    Article  CAS  Google Scholar 

  25. Zhang G, Jin S, Ji J, Jing B, Bao F, Shu Q. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2018;131:89–93.

    Article  CAS  Google Scholar 

  26. Zhang G, Jin S, Li L, Li Y, Li Z, Wang D, Zhang B, Jing B, Shu Q. Thermal stability assessment of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:1185–90.

    Article  CAS  Google Scholar 

  27. Sun D, Miao X, Xie C, Gu J, Li R. Study on thermal properties and kinetics of benzoyl peroxide by ARC and C80 methods. J Therm Anal Calorim. 2012;107:943–8.

    Article  CAS  Google Scholar 

  28. Zhu J, Jin S, Cheng B, Li K, Zeng X, Chen S. Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2018;132:563–9.

    Article  CAS  Google Scholar 

  29. Mebarek AH, Walter S, Kill G, Cogneville C. ARC study of thermal stability of alkali metal alkoxides. J Therm Anal Calorim. 1999;58:225–35.

    Article  CAS  Google Scholar 

  30. Naito M, Radcliffe C, Wada Y, Hoshino T, Liu X, Arai M, Tamura M. A comparative study on the autoxidation of dimethyl ether (DME) comparison with diethyl ether (DEE) and diisopropyl ether (DIPE). J Loss Prev Process Ind. 2005;18:469–73.

    Article  Google Scholar 

  31. Liu X, Zhang Q, Ito S, Wada Y. Oxidation characteristics and products of five ethers at low temperature. Fuel. 2016;165:513–25.

    Article  CAS  Google Scholar 

  32. Zhang Q, Zheng Y, Liu X, Wang W, Ma L, Lai F, Zhou X. Hydroperoxide formation and thermal stability of ethyl t-butyl ether oxidation. Energy Fuels. 2017;31:62–8170.

    Google Scholar 

  33. The national standard of the people’s Republic of China. Animal and vegetable fats and oils-Determination of peroxide value.,2001; GB/T 5538-2005/ISO 3960.

  34. Liang Z, Shen M, Liu H, Wen C. Study on the process of autoxidation of slash pine rosin. J Chem Ind For Prod. 2003;37(5):14–6.

    Google Scholar 

  35. Sreekantan SV, Surianarayanan M, Samuel Vara Kumar J, Seshadri H, Mandal AB. Effects of diluents on the reaction hazards of tributyl phosphate with nitric acid. Org Process Res Dev. 2014;18:1821–7.

    Article  CAS  Google Scholar 

  36. Samuel Vara Kumar J, Smitha VS, Sivanesh NE, Surianarayanan M, Seshadri H, Lakshman V. Reactive thermal hazards of irradiated tributyl phosphate with nitric acid. Thermochim Acta. 2018;666:18–26.

    Article  CAS  Google Scholar 

  37. Kumar J, Smitha VS, Surianarayanan M, Seshadri H, Manda AB. Influence of irradiation on the structure and thermo-kinetic behavior of tri-n-butyl phosphate. J Therm Anal Calorim. 2016;124:1525–34.

    Article  Google Scholar 

  38. Smitha VS, Samuel Vara Kumar J, Surianarayanan M, Seshadri H, Lakshman NV. Reactive chemical pathway of tributyl phosphate with nitric acid. Process Saf Environ Prot. 2018;116:677–84.

    Article  CAS  Google Scholar 

  39. Smitha VS, Surianarayanan M, Seshadri H, Lakshman NV, Manda AB. Reactive thermal hazards of tributyl phosphate with nitric acid. Ind Eng Chem Res. 2012;51:7205–10.

    Article  CAS  Google Scholar 

  40. Smitha VS, Surianarayanan M, Seshadri H, Mandal AB. Thermal behavior pattern of tributyl phosphate under adiabatic conditions. J Therm Anal Calorim. 2013;111:849–56.

    Article  CAS  Google Scholar 

  41. Gao Y, Yan Xue, Lǚ Z, Wang Z, Chen Z, Shi N, Sun F. Self-accelerating decomposition temperature and quantitative structure–property relationship of organic peroxides. Process Saf Environ Prot. 2015;94:322–8.

    Article  CAS  Google Scholar 

  42. Graham SR, Hodgson R, Vechot L, Essa MI. Calorimetric studies on the thermal stability of methyl ethyl ketone peroxide (MEKP) formulations. Process Saf Environ Prot. 2011;89:424–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11762003), National Institute of Advanced Industrial Science and Technology Fellowship of Japan, Major Science and Technology Special Project in Guangxi (AA17204065-20), and Science Foundation of Guangxi University for Nationalities of China (2017MDQN004, XTCX201706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongmin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, X., Kubota, S. et al. Thermal oxidation process and characteristic of abietic acid and gum rosin by accelerating rate calorimeter (ARC). J Therm Anal Calorim 138, 479–488 (2019). https://doi.org/10.1007/s10973-019-08195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08195-8

Keywords

Navigation