Skip to main content
Log in

Compressive strength development and hydration of cement–fly ash composite treated with microwave irradiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to investigate the relations between the microstructure and compressive strength of cement–fly ash-based material treated with microwave irradiation, the specimens microwave irradiated for 45 min was compared against that cured using (a) normal curing at 20 ± 1 °C, > 90% RH, (b) steam curing at 40 °C for 10 h and (c) steam curing at 80 °C for 4 h by performing compressive strength, X-ray diffraction, thermogravimetry–differential scanning calorimetry, scanning electron microscope–energy-dispersive spectroscopy and mercury intrusion porosimetry. The results show that although the early hydration degree of the microwave-cured composite is lower than that under steam curing, the microwave can significantly reduce the porosity, especially the pores less than 100 nm, to improve the early strength of mortar. The hydration degree of composite binder is similar to that under steam curing, and the porosity (especially the pores larger than 50 nm) of mortar under microwave curing is still the lowest, which makes compressive strength of mortar under microwave curing is the highest at later age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang A, Zhang C, Sun W. Fly ash effects: I. The morphological effect of fly ash. Cem Concr Res. 2003;33(12):2023–9.

    Article  CAS  Google Scholar 

  2. Wang A, Zhang C, Sun W. Fly ash effects: II. The active effect of fly ash. Cem Concr Res. 2004;34(34):2057–60.

    Article  CAS  Google Scholar 

  3. Wang A, Zhang C, Sun W. Fly ash effects: III. The microaggregate effect of fly ash. Cem Concr Res. 2004;34(11):2061–6.

    Article  CAS  Google Scholar 

  4. Zhao J, Li D, Liao S, Wang D, Wang H, Yan P. Influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) and resulting consequences on hydration and hardening properties of blended cement. J Therm Anal Calorim. 2018;132(3):1–12.

    Article  Google Scholar 

  5. Liu S, Kong Y, Wang L. A comparison of hydration properties of cement–low quality fly ash binder and cement–limestone powder binder. J Therm Anal Calorim. 2014;116(2):937–43.

    Article  CAS  Google Scholar 

  6. Sohn D, Johnson DL. Microwave curing effects on the 28-day strength of cementitious materials. Cem Concr Res. 1999;29(2):241–7.

    Article  CAS  Google Scholar 

  7. Korpa A, Trettin R. Very high early strength of ultra-high performance concrete containing nanoscale pozzolans using the microwave heat curing method. Adv Cem Res. 2008;20(4):175–84.

    Article  CAS  Google Scholar 

  8. Lee M-G. Preliminary study for strength and freeze-thaw durability of microwave-and steam-cured concrete. J Mater Civ Eng. 2007;19(11):972–6.

    Article  CAS  Google Scholar 

  9. Lee M-G, Huang Y, Kan Y-C. The strength and rapid chloride permeability of microwave cured concrete. Int J Appl Sci Eng. 2007;5(1):53–63.

    Google Scholar 

  10. Shi S, Bai Y, Li H, Xu D, Basheer P, editors. Comparative study of alkali-activated fly ash manufactured under pulsed microwave curing and thermal oven curing. In: The 4th conference on the durability of concrete structures, USA; 2014.

  11. Hoyos-Montilla AA, Puertas F, Tobón JI. Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash. J Therm Anal Calorim. 2017;131(9):1–16.

    Google Scholar 

  12. Wilińska I, Pacewska B. Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash. J Therm Anal Calorim. 2018;72:1–21.

    Google Scholar 

  13. Somaratna J, Ravikumar D, Neithalath N. Response of alkali activated fly ash mortars to microwave curing. Cem Concr Res. 2010;40(12):1688–96.

    Article  CAS  Google Scholar 

  14. Somaratna JI. Microwave curing of alkali activated cement free binder mortars: a thesis. Clarkson University; 2012.

  15. Makul N, Rattanadecho P, Agrawal DK. Applications of microwave energy in cement and concrete: a review. Renew Sustain Energy Rev. 2014;37(3):715–33.

    Article  CAS  Google Scholar 

  16. Makul N, Chatveera B, Ratanadecho P. Use of microwave energy for accelerated curing of concrete: a review. Songklanakarin J Sci Technol. 2009;31(1):1–13.

    Google Scholar 

  17. Buttress A, Jones A, Kingman S. Microwave processing of cement and concrete materials-towards an industrial reality? Cem Concr Res. 2015;68:112–23.

    Article  CAS  Google Scholar 

  18. Leung CK, Pheeraphan T. Determination of optimal process for microwave curing of concrete. Cem Concr Res. 1997;27(3):463–72.

    Article  CAS  Google Scholar 

  19. Topcu IB, Toprak MU, Akdag D. Determination of optimal microwave curing cycle for fly ash mortars. Can J Civ Eng. 2008;35(4):349–57.

    Article  CAS  Google Scholar 

  20. Kong Y, Wang P, Liu S, Gao Z. Hydration and microstructure of cement based materials under microwave curing. Constr Build Mater. 2016;114:831–8.

    Article  CAS  Google Scholar 

  21. Makul N, Keangin P, Rattanadecho P, Chatveera B, Agrawal DK. Microwave-assisted heating of cementitious materials: relative dielectric properties, mechanical property, and experimental and numerical heat transfer characteristics. Int Commun Heat Mass Transf. 2010;37(8):1096–105.

    Article  CAS  Google Scholar 

  22. Makul N. Dielectric permittivity of various cement-based materials during the first 24 hours hydration. Open J Inorg Nonmet Mater. 2013;3(4):53.

    CAS  Google Scholar 

  23. Taylor HFW. Cement chemistry. 2nd ed., Chemistry for engineersLondon: Thomas Telford Publishing; 1997.

    Book  Google Scholar 

  24. Taylor HFW, Famy C, Scrivener KL. Delayed ettringite formation. Cem Concr Res. 2001;31(5):683–93.

    Article  CAS  Google Scholar 

  25. Fu Y, Gu P, Xie P, Beaudoin JJ. A kinetic study of delayed ettringite formation in hydrated Portland cement paste. Cem Concr Res. 1995;25(1):63–70.

    Article  CAS  Google Scholar 

  26. Sha W, O’Neill EA, Guo Z. Differential scanning calorimetry study of ordinary Portland cement. Cem Concr Res. 1999;29(9):1487–9.

    Article  CAS  Google Scholar 

  27. Escalante-GarcÍa JI, Sharp JH. The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem Concr Res. 2001;31(5):695–702.

    Article  Google Scholar 

  28. Mehta PK, Monteiro PJM. Concrete: microstructure, properties, and materials. London: McGraw-Hill; 2006.

    Google Scholar 

  29. Link G, Miksch S, Takayama S, Thumm M, editors. Direct experimental demonstration of non-thermal microwave effects during sintering of ceramics. In: The 33rd IEEE international conference on plasma science, 2006. ICOPS 2006. IEEE conference record-abstracts. IEEE; 2006.

  30. Ding Z, Zhao Y, Chen F, Chen J, Duan S. Magnetization mechanism of magnetized water. Acta Phys Sin. 2011;6:432–9.

    Google Scholar 

  31. Esmaeilnezhad E, Choi HJ, Schaffie M, Gholizadeh M, Ranjbar M. Characteristics and applications of magnetized water as a green technology. J Clean Product. 2017;161:908–21.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Twelfth Five-year National Science-technology Support Plan of China (2012BA20B02) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Wang, P. & Liu, S. Compressive strength development and hydration of cement–fly ash composite treated with microwave irradiation. J Therm Anal Calorim 138, 123–133 (2019). https://doi.org/10.1007/s10973-019-08096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08096-w

Keywords

Navigation