Skip to main content
Log in

Characterization of Saqez as a natural chewing gum

Ash content, textural and thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, oleo-gum resin obtained from wild pistachio trees (Pistacia atlantica Desf. Subsp. kurdica), known as Saqez, was used as a biodegradable, biocompatible, natural, and edible chewing gum. Saqez was characterized by ash content, texture profile analysis, and differential scanning calorimetry (DSC). Furthermore, Saqez was also compared to commercial chewing gum samples. The total ash content was found highest in chewing gums followed by Saqez. Moreover, all texture parameter values of Saqez were lower than conventional chewing gums. The analysis of DSC in Saqez confirmed that the glass transition temperature was comparable to commercial chewing gums. Saqez gum was seen to be an ideal replacement for a synthetic gum base in the manufacturing of a commercial chewing gum. The present study offers new information on Saqez gum, which will be precious and useful for explaining its unique textural properties and thermal behavior in the area of food science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mothé CG, de Freitas JS. Lifetime prediction and kinetic parameters of thermal decomposition of cashew gum by thermal analysis. J Therm Anal Calorim. 2018;131:397–404.

    Article  CAS  Google Scholar 

  2. Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003;63:10–21.

    Article  CAS  PubMed  Google Scholar 

  3. Patra N, Vojtová L, Martinová L. Deacetylation-induced changes in thermal properties of Sterculia urens gum. J Therm Anal Calorim. 2015;122:235–40.

    Article  CAS  Google Scholar 

  4. Galla NR, Dubasi GR. Chemical and functional characterization of Gum karaya (Sterculia urens L.) seed meal. Food Hydrocoll. 2010;24:479–85. https://doi.org/10.1016/j.foodhyd.2009.12.003.

    Article  CAS  Google Scholar 

  5. Patra N, Martinová L, Stuchlik M, Černík M. Structure-property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres. Carbohydr Polym. 2015;120:69–73.

    Article  CAS  PubMed  Google Scholar 

  6. Vinod VTP, Sashidhar RB, Suresh KI, Rama Rao B, Vijaya Saradhi UVR, Prabhakar Rao T. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll 2008;22:899–915. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0268005X07001294.

  7. Mahdavi A. The economic, social, and ecological impacts of wild pistachio (Pistacia atlantica Desf.) oleo-gum resin extraction cooperatives in Zagros forests, Ilam province, Iran. For Trees Livelihoods. 2015;24:275–84. https://doi.org/10.1080/14728028.2015.1090934.

    Article  Google Scholar 

  8. Mikaili P, Shayegh J, Sarahroodi S, Sharifi M. Pharmacological properties of herbal oil extracts used in Iranian traditional medicine. Adv Environ Biol. 2012;6:153–8.

    Google Scholar 

  9. Rezaie M, Farhoosh R, Iranshahi M, Sharif A, Golmohamadzadeh S. Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 2015;173:577–83. https://doi.org/10.1016/j.foodchem.2014.10.081.

    Article  CAS  PubMed  Google Scholar 

  10. Rahbar Saadat Y, Barzegari A, Zununi Vahed S, Saeedi N, Eskandani M, Omidi Y, et al. Cyto/genotoxic effects of Pistacia atlantica resin, a traditional gum. DNA Cell Biol. 2016;35:261–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27196631.

  11. Moradi S, Limaei SM, Lohmander P, Khanmohammadi M. Quantitative and financial evaluation of non-timber forest products (case study: Zemkan basin forests, West of Iran). J For Res. 2017;28:371–9. https://doi.org/10.1007/s11676-016-0313-3.

    Article  Google Scholar 

  12. Savedoroudi P, Mirzajani F, Aliahmadi A, Ghassempour A. Top-down thermal analysis versus bottom-up gas chromatography-mass spectrometry in an adulteration study of Pistacia atlantica Desf. oleoresin. J Therm Anal Calorim. 2016;123:2451–7.

    Article  CAS  Google Scholar 

  13. Mahdavi A. The economic, social, and ecological impacts of wild pistachio (Pistacia atlantica Desf.) oleo-gum resin extraction cooperatives in Zagros forests, Ilam Province, Iran. For Trees Livelihoods. 2015;24:275–84. https://doi.org/10.1080/14728028.2015.1090934.

    Article  Google Scholar 

  14. Mousavi R. Non-wood forest products, the utilization, and harvesting methods in Sardasht, North West Iran. Int J For Soil Eros. 2012;2:133–6.

    Google Scholar 

  15. Sharifi MS, Hazell SL. GC-MS analysis and antimicrobial activity of the essential oil of the trunk exudates from Pistacia atlantica kurdica. J Pharm Sci Res. 2011;3:1364–7.

    CAS  Google Scholar 

  16. Kamrani Y, Amanlou M, Esmaeelian B, Rahimi M. In vitro antibacterial and antiadherence properties of flavonoid-rich extract of Pistacia atlantica hull against microorganisms involved in dental plaque. Planta Med. 2007;73:P_198. https://doi.org/10.1055/s-2007-986979.

    Article  Google Scholar 

  17. Abbasi S. Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Curr Opin Colloid Interface Sci. 2017;28:37–45.

    Article  CAS  Google Scholar 

  18. Dabestani M, Kadkhodaee R, Phillips GO, Abbasi S. Persian gum: a comprehensive review on its physicochemical and functional properties. Food Hydrocoll. 2017;78:92–9.

    Article  CAS  Google Scholar 

  19. Welti-Chanes J, Vergara-Balderas F, Perez E, Bermudex D, Valdex-Fragose A, Mujica-Paz H. Phase transitions and hygroscopicity in chewing gum manufacture. In: Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, editors. Food engineering: integrated approaches. New York, NY: Springer; 2008.

    Google Scholar 

  20. Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CEC, et al. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int. 2014;66:454–62. https://doi.org/10.1016/j.foodres.2014.10.010.

    Article  CAS  Google Scholar 

  21. Mohammadi N, Ehsani MR, Bakhoda H. Design and evaluation of the release characteristics of caffeine-loaded microcapsules in a medicated chewing gum formulation. Food Biophys. 2018;13:240–9. https://doi.org/10.1007/s11483-018-9530-y.

    Article  Google Scholar 

  22. Palabiyik I, Toker OS, Konar N, Öner B, Demirci AS. Development of a natural chewing gum from plant based polymer. J Polym Environ. 2018;26:1969–78. https://doi.org/10.1007/s10924-017-1094-2.

    Article  CAS  Google Scholar 

  23. Shete RB, Muniswamy VJ, Pandit AP, Khandelwal KR. Formulation of eco-friendly medicated chewing gum to prevent motion sickness. AAPS PharmSciTech. 2015;16:1041–50. https://doi.org/10.1208/s12249-015-0296-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Welti-Chanes J, Vergara-Balderas F, Perez E, Bermudex D, Valdex-Fragose A, Mujica-Paz H. Phase transitions and hygroscopicity in chewing gum manufacture. In: Gutiérrez-López GF, Barbosa-Cánovas GV, Welti-Chanes J, Parada-Arias E, editors. Food Engineering: Integrated Approaches. New York, NY: Springer; 2008. p. 139–53.

    Chapter  Google Scholar 

  25. Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CEC, et al. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int. 2014;66:454–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0963996914006565.

  26. AOAC: Official Methods of Analysis of AOAC International. 1990. p. 1058–9.

  27. Breene WM. Application of texture profile analysis to instrumental food texture evaluation. J Texture Stud. 1975;6:53–82. https://doi.org/10.1111/j.1745-4603.1975.tb01118.x.

    Article  Google Scholar 

  28. Mohammadi N, Ehsani MR, Bakhoda H. Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. Flavour Fragr J. 2018;33:14–6. https://doi.org/10.1002/ffj.3452.

    Article  CAS  Google Scholar 

  29. Razavi SMA, Cui SW, Guo Q, Ding H. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2014;35:453–62.

    Article  CAS  Google Scholar 

  30. Cui W, Mazza G. Physicochemical characteristics of flaxseed gum. Food Res Int. 1996;29:397–402.

    Article  CAS  Google Scholar 

  31. Amin AM, Ahmad AS, Yin YY, Yahya N, Ibrahim N. Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocoll. 2007;21:273–9.

    Article  CAS  Google Scholar 

  32. Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 2008;22:807–18.

    Article  CAS  Google Scholar 

  33. Palabiyik I, Toker OS, Konar N, Öner B, Demirci AS (2017) Development of a natural chewing gum from plant based polymer. J Polym Environ. https://doi.org/10.1007/s10924-017-1094-2.

  34. Konar N, Palabiyik I, Toker OS, Sagdic O. Chewing gum: production, quality parameters and opportunities for delivering bioactive compounds. Trends Food Sci Technol. 2016;55:29–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0924224416301443.

  35. Garg T, K. Goyal A. Medicated chewing gum: patient compliance oral drug delivery system. Drug Deliv Lett. 2014;4:72–8. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=2210-3031&volume=4&issue=1&spage=72.

  36. McGowan BA, Lee S-Y. Comparison of methods to analyze time–intensity curves in a corn zein chewing gum study. Food Qual Prefer. 2006;17:296–306. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0950329305001102.

  37. Mehta FF, Rajagopalan R, Trivedi P. Formulation and characterization of caffeine biodegradable chewing gum delivery system for alertness using plasticized poly(D, L-lactic acid) as gum base. Trop J Pharm Res. 2017;16:1489–96.

    Article  CAS  Google Scholar 

  38. Mehta FF, Trivedi P. Formulation and characterization of biodegradable medicated chewing gum delivery system for motion sickness using corn zein as gum former. Trop J Pharm Res. 2015;14:753–60. Available from: http://www.tjpr.org.

  39. Mehta F, Trivedi P. Formulation and texture characterization of zein chewing gum. Sch Res Libr Arch Appl Sci Res. 2012;4:781–91.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Nikoo Ostovar and Mehdi Zojaji for the technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ehsani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, N., Ehsani, M.R. & Bakhoda, H. Characterization of Saqez as a natural chewing gum. J Therm Anal Calorim 137, 825–829 (2019). https://doi.org/10.1007/s10973-018-7983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7983-3

Keywords

Navigation