Skip to main content
Log in

Optimization of heat transfer and pressure drop in a tube with loose-fit perforated twisted tapes by Taguchi method and grey relational analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work introduces the determination of the optimum values of the design parameters in a tube with loose-fit perforated twisted tapes. The effects of the design parameters such as twist ratio (y/D), width ratio (W/D), hole diameter ratio (d/D) and Reynolds number (Re) on heat transfer (i.e. Nusselt number) and pressure drop (i.e. friction factor) were analyzed by Taguchi method (TM) and grey relational analysis (GRA). The Nusselt number and friction factor were taken into account as performance parameters. Taguchi Method is based on analysis of variances and implements the orthogonal arrays for experimental design. L16 orthogonal array was selected as experimental plan. Firstly, each performance parameter was optimized, independently. Then, all the performance parameters were optimized together by TM and GRA. According to the experimental plan results, the most important factor for both Nusselt number and friction factor is Reynolds number, while the least significant factors are twist ratio (y/D) and width ratio (W/D).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cp:

Specific heat capacity of air (J kg−1 K−1)

C rp :

Grey relational coefficients

d :

Hole diameter (m)

D :

Inner diameter of the tube (m)

D o :

Outer diameter of the tube (m)

e rp :

The rth response variable among p experiments

f :

Friction factor

G r :

Grey relational grade

h :

Heat transfer coefficient (W m−2 K−1)

I :

Current (A)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the test tube (m)

\(\dot{m}\) :

Air mass flow rate (kg s−1)

Maxe rp :

The largest value of erp

Mine rp :

The smallest value of erp

n :

The count of iterations in confirmation of experiments

N rp :

The normalized value rth response variable in the pth experiment

N r :

The ideal normalized value

Nu:

Nusselt number

P :

Pressure drop (Pa)

Re :

Reynolds number

Q :

Heat transfer (W)

q :

Heat flux (W m−2)

t :

Thickness of the test tube (m)

T :

Steady state temperature (K)

U :

Fluid velocity (m s−1)

V :

Voltage (V)

W :

Twisted tape width (m)

y :

Twist length of twisted tape (m)

Y :

The achievement amount of ith observation

Z :

Achievement statistic

ρ :

Fluid density (kg m−3)

δ :

Thickness of twisted tape (m)

\(\nu\) :

Fluid kinematic viscosity (m2 s−1)

b:

Bulk

i:

Inner

ins:

Insulated test tube

iw:

Inner wall of test tube

m:

Mean

o:

Outer

References

  1. Chang SW, Huang BJ. Thermal performances of tubular flows enhanced by ribbed spiky twist tapes with and without edge notches. Int J Heat Mass Transf. 2014;73:645–63.

    Article  Google Scholar 

  2. Eiamsa-ard S. Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. Int Commun Heat Mass Transf. 2010;31:644–51.

    Article  Google Scholar 

  3. Mokkapati V, Lin CS. Numerical study of an exhaust heat recovery system using corrugated tube heat exchanger with twisted tape inserts. Int Commun Heat Mass Transf. 2014;57:53–64.

    Article  Google Scholar 

  4. Hong Y, Du J, Wang S. Experimental heat transfer and flow characteristics in a spiral grooved tube with overlapped large/small twin twisted tapes. Int J Heat Mass Transf. 2017;106:1178–90.

    Article  CAS  Google Scholar 

  5. Bas H, Ozceyhan V. Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp Therm Fluid Sci. 2012;41:51–8.

    Article  Google Scholar 

  6. Nanan K, Yongsiri K, Wongcharee K, Thianpong C, Eiamsa-ard S. Heat transfer enhancement by helically twisted tapes inducing co- and counter-swirl flows. Int Commun Heat Mass Transf. 2013;46:67–73.

    Article  Google Scholar 

  7. Eiamsa-ard S, Yongsiri K, Nanan K, Thianpong C. Heat transfer augmentation by helically twisted tapes as swirl and turbulence promoters. Chem Eng Process. 2012;60:42–8.

    Article  CAS  Google Scholar 

  8. Man C, Lv X, Hu J, Sun P, Tang Y. Experimental study on effect of heat transfer enhancement for single-phase forced convective flow with twisted tape inserts. Int J Heat Mass Transf. 2017;106:877–83.

    Article  CAS  Google Scholar 

  9. Jaramillo OA, Borunda M, Velazquez-Lucho KM, Robles M. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy. 2016;93:125–41.

    Article  Google Scholar 

  10. Vashistha C, Patil AK, Kumar M. Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl Therm Eng. 2016;96:117–29.

    Article  Google Scholar 

  11. Abdolbaqi MK, Azmi WH, Mamat R, Mohamed NMZN, Najafi G. Experimental investigation of turbulent heat transfer by counter and co-swirling flow in a flat tube fitted with twin twisted tapes. Int Commun Heat Mass Transf. 2016;75:295–302.

    Article  Google Scholar 

  12. Gunes S, Karakaya E. Thermal characteristics in a tube with loose-fit perforated twisted tapes. Heat Transf Eng. 2015;36:1504–17.

    Article  CAS  Google Scholar 

  13. Saysroy A, Eiamsa-ard S. Periodically fully-developed heat and fluid flow behaviors in a turbulent tube flow with square-cut twisted tape inserts. Appl Therm Eng. 2017;112:895–910.

    Article  CAS  Google Scholar 

  14. Lin ZM, Wang LB, Lin M, Dang W, Zhang YH. Numerical study of the laminar flow and heat transfer characteristics in a tube inserting a twisted tape having parallelogram winglet vortex generators. Appl Therm Eng. 2017;115:644–58.

    Article  Google Scholar 

  15. Bhuiya MMK, Chowdhury MSU, Saha M, Islam MT. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. Int Commun Heat Mass Transf. 2013;46:49–57.

    Article  Google Scholar 

  16. Bhuiya MMK, Chowdhury MSU, Shahabuddin M, Saha M, Memon LA. Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. Int Commun Heat Mass Transf. 2013;48:124–32.

    Article  Google Scholar 

  17. Bhuiya MMK, Azad AK, Chowdhury MSU, Saha M. Heat transfer augmentation in a circular tube with perforated double counter twisted tape inserts. Int Commun Heat Mass Transf. 2016;74:18–26.

    Article  Google Scholar 

  18. Piriyarungroda N, Eiamsa-ard S, Thianpong C, Pimsarn M, Nanan K. Heat transfer enhancement by tapered twisted tape inserts. Chem Eng Process. 2015;96:62–71.

    Article  CAS  Google Scholar 

  19. Hasanpour A, Farhad M, Sedighi K. Experimental heat transfer and pressure drop study on typical, perforated, V-cut and U-cut twisted tapes in a helically corrugated heat exchanger. Int Commun Heat Mass Transf. 2016;71:126–36.

    Article  Google Scholar 

  20. Nanan K, Thianpong C, Promvonge P, Eiamsa-ard S. Investigation of heat transfer enhancement by perforated helical twisted-tapes. Int Commun Heat Mass Transf. 2014;52:106–12.

    Article  Google Scholar 

  21. Murugesan P, Mayilsamy K, Suresh S. Turbulent heat transfer and pressure drop in tube fitted with square-cut twisted tape. Chinese J Chem Eng. 2010;18:609–17.

    Article  CAS  Google Scholar 

  22. Chang SW, Jan YJ, Liou JS. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. Int J Therm Sci. 2007;46:506–18.

    Article  Google Scholar 

  23. Chang SW, Jan YJ, Liou JS. Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Therm Fluid Sci. 2007;32:489–501.

    Article  CAS  Google Scholar 

  24. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C. Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng. 2010;30:310–8.

    Article  Google Scholar 

  25. Eiamsa-ard S, Seemawute P, Wongcharee K. Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in a laminar and turbulent tube flows. Exp Therm Fluid Sci. 2010;34:711–9.

    Article  Google Scholar 

  26. Rahimi M, Shabanian SR, Alsairafi AA. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process. 2009;48:762–70.

    Article  CAS  Google Scholar 

  27. Kackar RN. Off-line quality control, parameter design and Taguchi method. J Qual Technol. 1985;17:176–209.

    Article  Google Scholar 

  28. Phadke MS, Kackar RN, Speeney DV, Grieco MJ. Off-line quality control in integrated fabrication using experimental design. AT&T Tech J. 1983;62:1273–309.

    Google Scholar 

  29. Taguchi G. Taguchi techniques for quality engineering. New York: Quality Resources; 1987.

    Google Scholar 

  30. Ross PJ. Taguchi techniques for quality engineering. New York: McGraw-Hill; 1988.

    Google Scholar 

  31. Phadke MS. Quality engineering using robust design. Upper Saddle River: Prentice Hall; 1989.

    Google Scholar 

  32. Roy RK. Design of experiments using the Taguchi approach. New York: Wiley; 2001.

    Google Scholar 

  33. Topuz A, Engin T, Ozalp AA, Erdogan B, Mert S, Yeter A. Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel. J Therm Anal Calorim. 2018;131:2843–63.

    Article  CAS  Google Scholar 

  34. Abadeh A, Passandideh-Dard M, Maghrebi MJ, Mohammadi M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7662-4.

    Article  Google Scholar 

  35. Qi Z, Chen J, Chen Z. Parametric study on the performance of a heat exchanger with corrugated louvered fins. ApplTherm Eng. 2007;27:539–44.

    CAS  Google Scholar 

  36. Turgut E, Cakmak G, Yildiz C. Optimization of the concentric heat exchanger with injector turbulators by Taguchi method. Energy Convers Manag. 2012;53:268–75.

    Article  Google Scholar 

  37. Yakut K, Sahin B, Celik C, Alemdaroglu N, Kurnuc A. Effects of tapes with double-sided delta-winglets on heat and vortex characteristics. Appl Energy. 2005;80:77–95.

    Article  Google Scholar 

  38. Gunes S, Manay E, Senyigit E, Ozceyhan V. A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts. Appl Therm Eng. 2011;31:2568–77.

    Article  Google Scholar 

  39. Hsieh C, Jang J. Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method. Appl Therm Eng. 2012;42:101–10.

    Article  Google Scholar 

  40. Chamoli S. A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles. Case Stud Therm Eng. 2015;5:59–69.

    Article  Google Scholar 

  41. Sahin B, Demir A. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins. Energy Convers Manag. 2008;49:1684–95.

    Article  CAS  Google Scholar 

  42. Bilen K, Yapici S, Celik CA. Taguchi approach for investigation of heat transfer from a surface equipped with rectangular blocks. Energ Convers Manag. 2001;42:951–61.

    Article  CAS  Google Scholar 

  43. Zeng M, Tang LH, Lin M, Wang QW. Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl Therm Eng. 2010;30:1775–83.

    Article  Google Scholar 

  44. Aghaie AZ, Rahimi AB, Akbarzadeh A. A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel—a Taguchi approach. Renew Energy. 2015;83:47–54.

    Article  Google Scholar 

  45. Kotcioglu I, Cansiz A, Khalaji MN. Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method. Appl Therm Eng. 2013;50:604–13.

    Article  Google Scholar 

  46. Kotcioglu I, Khalaji MN, Cansiz A. Heat transfer analysis of a rectangular channel having tubular router in different winglet configurations with Taguchi method. Appl Therm Eng. 2018;132:637–50.

    Article  Google Scholar 

  47. Senthilkumar N, Tamizharasan T, Anandakrishnan V. Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis. Measurement. 2014;58:520–36.

    Article  Google Scholar 

  48. Yeh J, Tsai T. Optimizing the fine-pitch copper wire bonding process with multiple quality characteristics using a grey-fuzzy Taguchi method. Microelectron Reliab. 2014;54:287–96.

    Article  CAS  Google Scholar 

  49. Lau C, Abdullah MZ, Ani FC. Optimization modeling of the cooling stage of reflow soldering process for ball grid array package using the gray-based Taguchi method. Microelectron Reliab. 2012;52:1143–52.

    Article  Google Scholar 

  50. Chiang Y-M, Hsieh HH. The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing. Comput Ind Eng. 2009;56:648–61.

    Article  Google Scholar 

  51. Pan LK, Wang CC, Wei SL, Sher HF. Optimizing multiple quality characteristics via Taguchi method-based grey analysis. J Mater Process Technol. 2007;182:107–16.

    Article  CAS  Google Scholar 

  52. Sarıkaya M, Gullu A. Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod. 2015;91:347–57.

    Article  CAS  Google Scholar 

  53. Equbal I, Kumar R, Shamim M, Ohdard RK. A grey-based Taguchi method to optimize hot forging process. Proc Mater Sci. 2014;6:1495–504.

    Article  CAS  Google Scholar 

  54. Chamoli S, Yu P, Kumar A. Multi-response optimization of geometric and flow parameters in a heat exchanger tube with perforated disk inserts by Taguchi grey relational analysis. Appl Therm Eng. 2016;103:1339–50.

    Article  Google Scholar 

  55. Celik N, Pusat G, Turgut E. Application of Taguchi method and grey relational analysis on a turbulated heat exchanger. Int J Therm Sci. 2018;124:85–97.

    Article  Google Scholar 

  56. Celik N, Turgut E, Yildiz S, Eren H. Applying Taguchi and grey relational methods to a heat exchanger with coil springs. In: 10th International conference on heat transfer, fluid mechanics and thermodynamics, HEFAT’14, Orlando, FL, USA, 14–16 July 2014.

  57. Kumbhar DG, Sane NK. numerical analysis and optimization of heat transfer and friction factor in dimpled tube assisted with regularly spaced twisted tapes using Taguchi and grey relational analysis. Proc Eng. 2015;127:652–9.

    Article  Google Scholar 

  58. Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng. 1953;75:385–7.

    Google Scholar 

  59. Senyigit E, Dugenci M, Aydin ME. Heuristic-based neural networks for stochastic dynamic lot sizing problem. Appl Soft Comput. 2013;13:1332–9.

    Article  Google Scholar 

  60. Babayigit B, Şenyigit E. Design optimization of circular antenna arrays using Taguchi method. Neural Comput Appl. 2017;28:1443–52.

    Article  Google Scholar 

  61. Yildiz Y, Senyigit E, Irdemez S. Optimization of specific energy consumption for Bomaplex red Cr-ldye removal from aqueous solution by electrocoagulation using Taguchi-neural method. Neural Comput Appl. 2013;23:1061–9.

    Article  Google Scholar 

  62. Babayigit B, Şenyigit E, Mumcu G. Optimum broadband E-patch antenna design with Taguchi method. J Electromagn Wave. 2016;30:915–27.

    Article  Google Scholar 

  63. Deng JL. Introduction to grey system. J Grey Syst. 1989;1:1–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Gunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, S., Senyigit, E., Karakaya, E. et al. Optimization of heat transfer and pressure drop in a tube with loose-fit perforated twisted tapes by Taguchi method and grey relational analysis. J Therm Anal Calorim 136, 1795–1806 (2019). https://doi.org/10.1007/s10973-018-7824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7824-4

Keywords

Navigation