Skip to main content
Log in

Crystallization kinetics study of melt-spun Zr66.7Ni33.3 amorphous alloy by electrical resistivity measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the electronic transport properties of as-spun Zr66.7Ni33.3 alloys were studied in detail by a combination of electrical resistivity and absolute thermoelectric power measurements over a temperature range from 25 up to 400 °C. Moreover, the isochronal and isothermal crystallization kinetics of Zr66.7Ni33.3 glassy alloy has been investigated based on the electrical resistivity measurements. The comparative study of the crystallization kinetics of these binary amorphous alloys was carried out, for the first time to our knowledge, using an accurate method for electrical resistivity measurements. In the isochronal heating process, the apparent activation energy for crystallization was determined to be, respectively, 371.4 kJ mol−1 and 382.2 kJ mol−1, by means of Kissinger and Ozawa methods. The Johnson–Mehl–Avrami model was used to describe the isothermal transformation kinetics, and the local Avrami exponent has been determined in the range from 2.97 to 3.23 with an average value of 3.1, implying a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. Based on an Arrhenius relationship, the local activation energy was analyzed, which yields an average value Ex = 376.2 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu J, Zhao Z, Zuo M, Xing Q, Sun Z, Wang Y. Effects of Ca addition on the glass formation, microhardness and corrosion resistance in different solutions of Zr66.7−xNi33.3Cax (x = 0, 1, 3 and 5 at.%) metallic glasses. J Alloy Compd. 2018;595:178–84. https://doi.org/10.1016/j.jallcom.2014.01.146.

    Article  CAS  Google Scholar 

  2. An WK, Xiong X, Liu Y, Li JH, Cai AH, Luo Y, Li TL, Li XS. Investigation of glass forming ability and crystallization kinetics of Zr63.5Al10.7Cu10.7Ni15.1 bulk metallic glass. J Alloy Compd. 2009;486(1–2):288–92.

    Article  CAS  Google Scholar 

  3. Gao Q, Jian Z, Xu J, Zhu M. Crystallization kinetics in Cu64.5Zr35.5 binary metallic glass. Key Eng Mater. 2017;2017:727. https://doi.org/10.4028/www.scientific.net/KEM.727.233.

    Article  Google Scholar 

  4. An S, Li Y, Li J, Zhao S, Liu B, Guan P. The linear relationship between diffusivity and crystallization kinetics in a deeply supercooled liquid Ni50Ti50 alloy. Acta Mater. 2018;152:1–6. https://doi.org/10.1016/j.actamat.2018.04.008.

    Article  CAS  Google Scholar 

  5. Andreoli AF, Ponsoni JB, Soares C, de Oliveira MF, Kiminami CS. Resistance upset welding of Zr-based bulk metallic glasses. J Mater Process Technol. 2018;255:760–4. https://doi.org/10.1016/j.jmatprotec.2018.01.034.

    Article  CAS  Google Scholar 

  6. Hua NB, Chen WZ, Liao ZL. Effects of Zr content on the bending property and crystallization behavior of ductile Zr-based bulk metallic glasses. Mater Sci Forum Trans Tech Publ. 2018;913:765–75. https://doi.org/10.4028/www.scientific.net/MSF.913.765.

    Article  Google Scholar 

  7. Liu BY, Ye F. Glass transition kinetics of La55Al25Ni10Cu10 bulk metallic glass by electrical resistivity measurement. Rare Met. 2013;32(4):359–62. https://doi.org/10.1007/s12598-013-0089-y.

    Article  CAS  Google Scholar 

  8. Kailath AJ, Dutta K, Alex TC, Mitra A. Crystallization study of Cu56Zr7Ti37 metallic glass by electrical resistivity measurement. J Mater Sci Technol. 2011;27(3):275–9. https://doi.org/10.1016/S1005-0302(11)60062-5.

    Article  CAS  Google Scholar 

  9. Nicoara M, Raduta A, Locovei C, Buzdugan D, Stoica M. About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. J Therm Anal Calorim. 2017;127(1):107–13. https://doi.org/10.1007/s10973-017-6808-0.

    Article  CAS  Google Scholar 

  10. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  11. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  12. Friedman HL. Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6(1):183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  13. Avramin M. Kinetics of phase change I: general theory. J Chem Phys. 1939;7:1103–12. https://doi.org/10.1063/1.1750380.

    Article  Google Scholar 

  14. Avramin M. Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24. https://doi.org/10.1063/1.1750631.

    Article  Google Scholar 

  15. Avramin M. Kinetics of phase change III: granulation, phase change and microstructure. J Chem Phys. 1941;9(2):177–84. https://doi.org/10.1063/1.1750872.

    Article  Google Scholar 

  16. Zarzycki J. Les verres et l’état vitreux. Paris: Masson; 1982.

    Google Scholar 

  17. Aji DP, Johari GP. Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass. J Chem Phys. 2018;148(14):144506. https://doi.org/10.1063/1.5024999.

    Article  CAS  PubMed  Google Scholar 

  18. de Boor J, Muller E. Data analysis for Seebeck coefficient measurements. Rev Sci Instrum. 2013;84:065102. https://doi.org/10.1063/1.4807697.

    Article  CAS  PubMed  Google Scholar 

  19. Iwanaga S, Toberer ES, LaLonde A, Snyder GJ. A high temperature apparatus for measurement of the Seebeck coefficient. Rev Sci Instrum. 2011;82:063905. https://doi.org/10.1063/1.3601358.

    Article  CAS  PubMed  Google Scholar 

  20. Zeid EA, Gaffar MA, Gaber A, Mostafa MS. Correlative study of the thermoelectric power, electrical resistivity and different precipitates of Al–1.12Mg2Si–0.35 Si (mass%) alloy. J Therm Anal Calorim. 2015;122(3):1269–77. https://doi.org/10.1007/s10973-015-4861-0.

    Article  CAS  Google Scholar 

  21. Sahin M, Çadırlı E, Bayram U, Ata P. Esener, Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx alloys. J Therm Anal Calorim. 2018;132:317–25. https://doi.org/10.1007/s10973-017-6939-3.

    Article  CAS  Google Scholar 

  22. Messaoud A, Fazel N, Garoux L, Gasser F, BenYounes R, Gasser JG. A new high temperature design to determine electrical and thermal conductivities and thermoelectric power. Applications to the sintered composite AgNi (90/10) “pseudo-alloy”. J Alloy Compd. 2018;739:407–17. https://doi.org/10.1016/j.jallcom.2017.12.140.

    Article  CAS  Google Scholar 

  23. Abadlia L, Gasser F, Khalouk K, Mayoufi M, Gasser JG. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures. Rev Sci Instrum. 2014;85:095121. https://doi.org/10.1063/1.4896046.

    Article  CAS  PubMed  Google Scholar 

  24. Smili B, Messaoud A, Bouchelaghem W, Abadlia L, Fazel N, Benmoussa A, Kaban I, Gasser F, Gasser JG. Temperature dependence of the electrical resistivity and absolute thermoelectric power of amorphous metallic glass Ni33.3Zr66.7. J Non-Cryst Solids. 2018;481:352–60. https://doi.org/10.1016/j.jnoncrysol.2017.11.012.

    Article  CAS  Google Scholar 

  25. Altounian Z, Foiles CL, Muir B, Strom-Olsen JO. Thermoelectric power of Ni–Zr metal glasses. Phys Rev B. 1983;27(4):1955–8. https://doi.org/10.1103/PhysRevB.27.1955.

    Article  CAS  Google Scholar 

  26. Gupta R, Gupata A, Nigam AK, Chandra G. Effect of induced disorder on low temperature resistivity of some non-magnetic and magnetic metallic glasses. J. Alloys Compd. 2001;326:275–9. https://doi.org/10.1016/S0925-8388(01)01283-X.

    Article  CAS  Google Scholar 

  27. Sun F, Gloriant T. Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J Alloy Compd. 2009;477(1):133–8. https://doi.org/10.1016/j.jallcom.2008.10.021.

    Article  CAS  Google Scholar 

  28. Kokanovice I. Effect of disorder on the electrical resistivity in the partially crystalline Zr76Ni24 metallic glasses. J Alloy Comp. 2006;421:12–8. https://doi.org/10.1016/j.jallcom.2005.11.004.

    Article  CAS  Google Scholar 

  29. Faber TE, Ziman JM. A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys. Philos Mag. 1965;11:153–73. https://doi.org/10.1080/14786436508211931.

    Article  CAS  Google Scholar 

  30. Kaban I, Khalouk K, Gasser F, Gasser JG, Bednarčik J, Shuleshova O, Okulov I, Gemming T, Mattern N, Eckert J. In situ studies of temperature-dependent behaviour and crystallization of Ni36.5Pd36.5P27 metallic glass. J Alloys Compd. 2014;615:S208–12. https://doi.org/10.1016/j.jallcom.2013.12.259.

    Article  CAS  Google Scholar 

  31. Mooij JH. Electrical conduction in concentrated disordered transition metal alloys. Phys Stat Sol A. 1973;17:521–30. https://doi.org/10.1002/pssa.2210170217.

    Article  CAS  Google Scholar 

  32. Gasser JG. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys. J Phys Condens Matter. 2008;20:114103. https://doi.org/10.1088/09538984/20/11/114103.

    Article  PubMed  Google Scholar 

  33. Sar F, Gasser JG. Electronic transport properties of liquid Ga–Zn alloys. Intermetallics. 2003;11(11):1369–76. https://doi.org/10.1016/j.intermet.2003.09.007.

    Article  CAS  Google Scholar 

  34. Zrouri H, Hugel J, Makradi A, Gasser JG. Spin-dependent electronic transport properties of liquid manganese. Phys Rev B. 2001;64:094202. https://doi.org/10.1103/PhysRevB.64.094202.

    Article  CAS  Google Scholar 

  35. Grosdidier B, Ben Abdellah A, Bouziane K, Mujibur Rahman SM, Gasser JG. Spin treatment-based approach for electronic transport in paramagnetic liquid transition metals. Philos Mag. 2013;93(26):3576–88. https://doi.org/10.1080/14786435.2013.816448.

    Article  CAS  Google Scholar 

  36. Pękała K, Antonowicz J, Jaśkiewicz P, Drobiazg T, Konupek J. Influence of quasicrystalline phase on transport processes in Zr70Pd30 amorphous alloy. J Alloys Compd. 2010;500:145–8. https://doi.org/10.1016/j.jallcom.2010.03.243.

    Article  CAS  Google Scholar 

  37. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  38. Kaban I, Jóvári P, Waske A, Stoica M, Bednarčik J, Beuneu B, Mattern N, Eckert J. Atomic structure and magnetic properties of Fe–Nb–B metallic glasses. J Alloy Compd. 2014;586:S189–93. https://doi.org/10.1016/j.jallcom.2012.09.008.

    Article  CAS  Google Scholar 

  39. Wu DY, Song KK, Gargarella P, Cao CD, Li R, Kaban L, Eckert J. Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu–Zr–Zn alloys. J Alloys Compd. 2016;664:99–108. https://doi.org/10.1016/j.jallcom.2015.12.187.

    Article  CAS  Google Scholar 

  40. Matsubara E, Ichitsubo T, Itoh K, Fukunaga T, Saida J, Nishiyama N, Kato H, Inoue A. Heating rate dependence of T g and T x in Zr-based BMGs with characteristic structures. J Alloys Compd. 2009;483:8–13. https://doi.org/10.1016/j.jallcom.2008.07.225.

    Article  CAS  Google Scholar 

  41. Wu J, Pan Y, Pi J. On non-isothermal kinetics of two Cu-based bulk metallic glasses. J Therm Anal Calorim. 2014;115:267–74. https://doi.org/10.1007/s10973-013-3288-8.

    Article  CAS  Google Scholar 

  42. Baulin O, Fabrègue D, Kato H, Liens A, Wada T, Pelletier JM. A new, toxic element-free Mg-based metallic glass for biomedical applications. J Non-Cryst Solids. 2018;481:397–402. https://doi.org/10.1016/j.jnoncrysol.2017.11.024.

    Article  CAS  Google Scholar 

  43. Song K, Bian X, Guo J, Li X, Xie M, Dong C. Study of non-isothermal primary crystallization kinetics of Al84Ni12Zr1Pr3 amorphous alloy. J Alloys Compd. 2008;465(1):L7–13. https://doi.org/10.1016/j.jallcom.2007.10.121.

    Article  CAS  Google Scholar 

  44. Lück R, Jiang Q, Predel B. Specific heat investigation of the glass transition and crystallization of amorphous NiZr2 using low heating rates. J Non-Cryst Solids. 1990;117:911–4. https://doi.org/10.1016/0022-3093(90)90674-B.

    Article  Google Scholar 

  45. Boutet S, Steele G, Dikeakos M, Altounian Z. Influence of oxygen impurities on the crystallization mechanism of NiZr2 metallic glasses. J Appl Phys. 2001;89(4):2441–6. https://doi.org/10.1063/1.1334920.

    Article  CAS  Google Scholar 

  46. Kim SM, Chandra D, Pal NK, Dolan MD, Chien WM, Talekar A, Lamb J, Paglieri SN, Flanagan TB. hydrogen permeability and crystallization kinetics in amorphous Ni–Nb–Zr alloys. Int J Hydrogen Energy. 2012;37(4):3904–13. https://doi.org/10.1016/j.ijhydene.2011.04.220.

    Article  CAS  Google Scholar 

  47. Wang HR, Gao YL, Min GH, Hui XD, Ye YF. Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys Lett A. 2003;314(1):81–7. https://doi.org/10.1016/S0375-9601(03)00853-3.

    Article  CAS  Google Scholar 

  48. Fetić AS, Gazdić I, Ostojić G, Sulejmanović S. Investigation of partially crystalline Zr77Ni23 metallic glass. TEM J. 2016;5(3):301–4. https://doi.org/10.18421/TEM53-08.

    Article  Google Scholar 

  49. Kokanovic I, Tonejc A. Influence of hydrogen dopant on the structure and crystallization of the partially crystalline Zr76Ni24 metallic glass. J Alloys Compd. 2004;377(1):141–9. https://doi.org/10.1016/j.jallcom.2004.01.049.

    Article  CAS  Google Scholar 

  50. Wang LF, Cui X, Zhang QD, Zu FQ. Thermal stability and crystallization kinetics of Cu–Zr–Al–Ag BMGs investigated with isothermal electrical resistance measurement. Met Mater Int. 2014;20(4):669–76. https://doi.org/10.1007/s12540-014-4012-3.

    Article  CAS  Google Scholar 

  51. Xu T, Jian Z, Chang F, Zhuo L, Zhang T. Isothermal crystallization kinetics of Fe75Cr5P9B4C7 metallic glass with cost-effectiveness and desirable merits. J Therm Anal Calorim. 2015;2015:1–7. https://doi.org/10.1007/s10973-018-7208-9.

    Article  CAS  Google Scholar 

  52. Sahoo KL, Panda AK, Das S, Rao V. Crystallization study of amorphous Al87.5Ni7Mm5Fe0.5 alloy by electrical resistivity measurement. Mater Lett. 2004;58(3):316–20. https://doi.org/10.1016/S0167-577X(03)00477-4.

    Article  CAS  Google Scholar 

  53. Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS. Kinetics of crystallization of amorphous Cu50Ti50 alloy. J Non-Cryst Solids. 2004;345:178–81. https://doi.org/10.1016/j.jnoncrysol.2004.08.018.

    Article  CAS  Google Scholar 

  54. Yan ZJ, He SR, Li JR, Zhou YH. On the crystallization kinetics of Zr60Al15Ni25 amorphous alloy. J Alloys Compd. 2004;368:175–9. https://doi.org/10.1016/j.jallcom.2003.08.074.

    Article  CAS  Google Scholar 

  55. Ramasamy P, Stoica M, Taghvaei AH, Prashanth KG, Kumar R, Eckert J. Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses. J Appl Phys. 2016;119:73908. https://doi.org/10.1063/1.4942179.

    Article  CAS  Google Scholar 

  56. Stoica M, Kumar S, Roth S, Ram S, Eckert J, Vaughan G, Yavari AR. Crystallization kinetics and magnetic properties of Fe66Nb4B30 bulk metallic glass. J Alloys Compd. 2009;483(1):632–7. https://doi.org/10.1016/j.jallcom.2007.11.150.

    Article  CAS  Google Scholar 

  57. Venkataraman S, Rozhkova E, Eckert J, Schulta L, Sordelet DJ. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement. Intermetallics. 2005;13(8):833–40. https://doi.org/10.1016/j.intermet.2005.01.010.

    Article  CAS  Google Scholar 

  58. Taghvaei AH, Eckert J. A comparative study on the isochronal and isothermal crystallization kinetics of Co46.45Fe25.55Ta8B20 soft magnetic metallic glass with high thermal stability. J Alloys Compd. 2016;675(1):223–30. https://doi.org/10.1016/j.jallcom.2016.03.053.

    Article  CAS  Google Scholar 

  59. Ranganathan S, Heimendahl MV. The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci. 1981;16:2401–4. https://doi.org/10.1007/BF01113575.

    Article  CAS  Google Scholar 

  60. Zhu M, Fa Y, Jian Z, Yao L, Jin C, Nan R, Chang FE. Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses. J Therm Anal Calorim. 2018;132(1):173–80. https://doi.org/10.1007/s10973-017-6867-2.

    Article  CAS  Google Scholar 

  61. Wang X, Wang D, Zhu B, Li Y, Han F. Crystallization kinetics and thermal stability of mechanically alloyed Al76Ni8Ti8Zr4Y4 glassy powder. J Non-Cryst Solids. 2014;385:111–6. https://doi.org/10.1016/j.jnoncrysol.2013.11.015.

    Article  CAS  Google Scholar 

  62. Lozada-Flores O, Figueroa IA, Gonzalez G, Salas-Reyes AE. Influence of minor additions of Si on the crystallization kinetics of Cu55Hf45 metallic glasses. Thermochim Acta. 2018;662:116–25. https://doi.org/10.1016/j.tca.2018.02.006.

    Article  CAS  Google Scholar 

  63. Musiał A, Śniadecki Z, Idzikowski B. Thermal stability and glass forming ability of amorphous Hf2Co11B alloy. Mater Des. 2017;114:404–9. https://doi.org/10.1016/j.matdes.2016.11.004.

    Article  CAS  Google Scholar 

  64. Majhi K, Varma KBR. Crystallization kinetic studies of CaBi2B2O7 glasses by non-isothermal methods. J Mater Sci. 2009;44(2):385–91. https://doi.org/10.1007/s10853-008-3149-1.

    Article  CAS  Google Scholar 

  65. Fang Y, Peng G, Ghafari M, Feng T. Thermodynamic properties and crystallization kinetics of the Co90 Sc10 amorphous alloy. Intermetallics. 2018;96:58–62. https://doi.org/10.1016/j.intermet.2018.02.013.

    Article  CAS  Google Scholar 

  66. Sun YD, Shen P, Li ZQ, Liu JS, Cong MQ, Jiang M. Kinetics of crystallization process of Mg–Cu–Gd based bulk metallic glasses. J Non-Cryst Solids. 2012;358:1120–7. https://doi.org/10.1016/j.jnoncrysol.2012.02.002.

    Article  CAS  Google Scholar 

  67. Lozada-Flores O, Figueroa IA, Lara GA, Gonzalez G, Borja-Soto C, Verduzco JA. Crystallization kinetics of Cu55Hf45 glassy alloy. J Non-Cryst Solids. 2017;460:1–5. https://doi.org/10.1016/j.jnoncrysol.2017.01.021.

    Article  CAS  Google Scholar 

  68. Jiang XD, Zhang HW, Wen QY, Zhong ZY, Tang XL. Crystallization kinetics of magnetron-sputtered amorphous CoNbZr thin films. Vacuum. 2005;77(2):209–15. https://doi.org/10.1016/j.vacuum.2004.09.012.

    Article  CAS  Google Scholar 

  69. Khoo CY, Liu H, Sasangka WA, Made RI, Tamura N, Kunz M, Budiman AS, Gan CL, Thompson CV. Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films. J Mater Sci. 2016;51:1864–72. https://doi.org/10.1007/s10853-015-9493-z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Smili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smili, B., Abadlia, L., Bouchelaghem, W. et al. Crystallization kinetics study of melt-spun Zr66.7Ni33.3 amorphous alloy by electrical resistivity measurements. J Therm Anal Calorim 136, 1053–1067 (2019). https://doi.org/10.1007/s10973-018-7737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7737-2

Keywords

Navigation