Skip to main content
Log in

Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic field strength

C p :

Specific heat, \(\left[ {{\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

d :

Nanoparticle diameter, \(\left[ {\text{nm}} \right]\)

g :

Gravitational acceleration, [m s−2]

h :

Convection heat transfer coefficient, \(\left[ {{\text{W}}\;{\text{m}}^{ - 2} \;{\text{K}}^{ - 1} } \right]\)

\(C_{\text{p}}\) :

Specific heat, \(\left[ {{\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

d :

Nanoparticle diameter, \(\left[ {\text{nm}} \right]\)

Ha :

Hartmann number

k :

Thermal conductivity, \(\left[ {{\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

\(K^{*}\) :

Fin relative thermal conductivity, \(\left( {k_{\text{s}} /k_{\text{f}} } \right)\)

l :

Enclosure length, \(\left[ {\text{nm}} \right]\)

L :

Enclosure non-dimension length

\(Nu\) :

Nusselt number

\(Nu_{\text{s}}\) :

Local Nusselt number

\(Nu_{\text{ave}}\) :

Average Nusselt number

\(p\) :

Pressure, \(\left[ {\text{Pa}} \right]\)

\(\bar{P}\) :

Modified pressure, \(\left[ {\text{Pa}} \right]\)

P :

Non-dimensional pressure,\(\left( {{{\bar{P}l^{2} } \mathord{\left/ {\vphantom {{\bar{P}l^{2} } {\rho_{\text{nf}} \alpha_{\text{f}}^{2} }}} \right. \kern-0pt} {\rho_{\text{nf}} \alpha_{\text{f}}^{2} }}} \right)\)

Pr :

Prandtl number \((\vartheta_{\text{f}} /\alpha_{\text{f}} )\)

Ra :

Rayleigh number \(\left( {{{g\beta_{\text{f}} l^{3} \left( {{\text{T}}_{\text{h}} - {\text{T}}_{\text{c}} } \right)} \mathord{\left/ {\vphantom {{g\beta_{\text{f}} l^{3} \left( {{\text{T}}_{\text{h}} - {\text{T}}_{\text{c}} } \right)} {\alpha_{\text{f}} \vartheta_{f} }}} \right. \kern-0pt} {\alpha_{\text{f}} \vartheta_{\rm f} }}} \right)\)

T :

Temperature, [K]

u, v :

Velocity components in x and y directions, \(\left[ {{\text{m}}\;{\text{s}}^{ - 1} } \right]\)

\(v_{\text{Br}}\) :

Brownian motion velocity, \(\left[ {{\text{m}}\;{\text{s}}^{ - 1} } \right]\)

U, V :

Non-dimensional velocity components in x and y directions \(\left( {U = {{ul} \mathord{\left/ {\vphantom {{ul} {\alpha_{\text{f}} }}} \right. \kern-0pt} {\alpha_{\text{f}} }},V = {{vl} \mathord{\left/ {\vphantom {{vl} {\alpha_{\text{f}} }}} \right. \kern-0pt} {\alpha_{\text{f}} }}} \right)\)

x, y :

Cartesian coordinates, \(\left[ {\text{m}} \right]\)

X, Y :

Non-dimensional coordinates \(\left( {X = x/l,Y = y/l} \right)\)

\(\alpha_{\text{m}}\) :

Magnetic field angle, [°]

\(\alpha\) :

Thermal diffusivity, \(\left[ {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right]\)

\(\phi\) :

Solid volume fraction

\(k_{\text{b}}\) :

Boltzmann constant, \(\left[ {{\text{m}}^{2} \;{\text{kg}}\;{\text{s}}^{2} \;{\text{K}}^{1} } \right]\)

\(\theta\) :

Non-dimensional temperature

\(\mu\) :

Dynamic viscosity, \(\left[ {{\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right]\)

\(\vartheta\) :

Kinematic viscosity, \(\left[ {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right]\)

\(\rho\) :

Density, \(\left[ {{\text{kg}}\;{\text{m}}^{ - 3} } \right]\)

\(\sigma\) :

Electrical conductivity, \(\left[ {\varOmega \;{\text{m}}} \right]\)

\(\gamma\) :

Fin angle, [°]

\(\psi\) :

Stream function

c:

Cold

h:

Hot

f:

Pure fluid

max:

Maximum

ave:

Average

nf:

Nanofluid

s:

Fin properties

References

  1. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61.

    Article  CAS  Google Scholar 

  2. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7183-1.

    Article  Google Scholar 

  3. Oreper GM, Szekely J. The effect of an externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. J Cryst Growth. 1983;64(3):505–15.

    Article  CAS  Google Scholar 

  4. Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38.

    Article  CAS  Google Scholar 

  5. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49(3):479–91.

    Article  CAS  Google Scholar 

  6. Chen CL, Chang SC, Chang CK. Lattice Boltzmann simulation for mixed convection of nanofluids in a square enclosure. Appl Math Model. 2015;39(8):2436–51.

    Article  Google Scholar 

  7. Abu-Nada E, Chamkha AJ. Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid. Int J Therm Sci. 2010;49(12):2339–52.

    Article  CAS  Google Scholar 

  8. Liao CC. Heat transfer transitions of natural convection flows in a differentially heated square enclosure filled with nanofluids. Int J Heat Mass Transf. 2017;115:625–34.

    Article  CAS  Google Scholar 

  9. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128(3):1765–70.

    Article  CAS  Google Scholar 

  10. Teamah MA. Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int J Therm Sci. 2008;47(3):237–48.

    Article  Google Scholar 

  11. Rashidi S, Bovand M, Esfahani JA. Opposition of magnetohydrodynamic and Al2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84.

    Article  CAS  Google Scholar 

  12. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  13. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    Article  CAS  Google Scholar 

  14. Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int J Therm Sci. 2017;111:256–73.

    Article  CAS  Google Scholar 

  15. Mehryan SAM, Ghalambaz M, Ismael MA, Chamkha AJ. Analysis of fluid–solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J Magn Magn Mater. 2017;424:161–73.

    Article  CAS  Google Scholar 

  16. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int Commun Heat Mass Transf. 2012;39(4):565–74.

    Article  CAS  Google Scholar 

  17. Oztop HF, Abu-Nada E, Varol Y, Chamkha A. Natural convection in wavy enclosures with volumetric heat sources. Int J Therm Sci. 2011;50(4):502–14.

    Article  Google Scholar 

  18. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133(3):1407–16. https://doi.org/10.1007/s10973-018-7219-6.

    Article  CAS  Google Scholar 

  19. Chowdhury R, Parvin S, Khan MAH, Chamkha AJ. MHD natural convection in a porous equilateral triangular enclosure with a heated square body in the presence of heat generation. Spec Top Rev Porous Media Int J. 2015;6(4):353–365.

    Article  Google Scholar 

  20. Sheikholeslami M, Rashidi MM, Hayat T, Ganji DD. Free convection of magnetic nanofluid considering MFD viscosity effect. J Mol Liq. 2016;218:393–9.

    Article  CAS  Google Scholar 

  21. Shahriari A, Javaran EJ, Rahnama M. Effect of nanoparticles Brownian motion and uniform sinusoidal roughness elements on natural convection in an enclosure. J Therm Anal Calorim. 2018;131(3):2865–84.

    Article  CAS  Google Scholar 

  22. Astanina MS, Riahi MK, Abu-Nada E, Sheremet MA. Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations. Int J Heat Mass Transf. 2018;116:532–48.

    Article  CAS  Google Scholar 

  23. Rashidi I, Mahian O, Lorenzini G, Biserni C, Wongwises S. Natural convection of Al2O3/water nanofluid in a square cavity: effects of heterogeneous heating. Int J Heat Mass Transf. 2014;74:391–402.

    Article  CAS  Google Scholar 

  24. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    Article  CAS  Google Scholar 

  25. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  26. Abu-Nada E, Oztop HF. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int J Heat Fluid Flow. 2009;30(4):669–78.

    Article  CAS  Google Scholar 

  27. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748–56.

    Article  CAS  Google Scholar 

  28. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall (s). Int J Therm Sci. 2010;49(9):1856–65.

    Article  CAS  Google Scholar 

  29. Chamkha AJ. Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer Heat Transf Part A Appl. 2002;41(1):65–87.

    Article  Google Scholar 

  30. Chamkha AJ, Al-Naser H. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int J Therm Sci. 2001;40(3):227–44.

    Article  CAS  Google Scholar 

  31. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  32. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A Appl. 2014;65(11):1089–113.

    Article  CAS  Google Scholar 

  33. Mansour MA, Chamkha AJ, Mohamed RA, El-Aziz MA, Ahmed SE. MHD natural convection in an inclined cavity filled with a fluid saturated porous medium with heat source in the solid phase. Nonlinear Anal Model Control. 2010;15(1):55–70.

    Google Scholar 

  34. Elatar A, Teamah MA, Hassab MA. Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int J Therm Sci. 2016;99:41–51.

    Article  Google Scholar 

  35. Oztop H, Bilgen E. Natural convection in differentially heated and partially divided square cavities with internal heat generation. Int J Heat Fluid Flow. 2006;27(3):466–75.

    Article  Google Scholar 

  36. Yousaf M, Usman S. Natural convection heat transfer in a square cavity with sinusoidal roughness elements. Int J Heat Mass Transf. 2015;90:180–90.

    Article  Google Scholar 

  37. Hsu HJ, Huang YH, Liu YH. Natural convection in an oscillating cylindrical enclosure with pin fins. Int J Heat Mass Transf. 2016;93:720–8.

    Article  Google Scholar 

  38. Tasnim SH, Collins MR. Numerical analysis of heat transfer in a square cavity with a baffle on the hot wall. Int Commun Heat Mass Transf. 2004;31(5):639–50.

    Article  Google Scholar 

  39. Nag A, Sarkar A, Sastri VMK. Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall. Comput Methods Appl Mech Eng. 1993;110(1–2):143–56.

    Article  Google Scholar 

  40. Ben-Nakhi A, Chamkha AJ. Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf. 2006;50(4):381–99.

    Article  Google Scholar 

  41. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci. 2007;46(5):467–78.

    Article  Google Scholar 

  42. Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha AJ. Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer Heat Transf Part A Appl. 2016;70(4):432–45.

    Article  CAS  Google Scholar 

  43. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31(1):218–29.

    Article  Google Scholar 

  44. Rashidi S, Bovand M, Esfahani JA. Sensitivity analysis for entropy generation in porous solar heat exchangers by RSM. J Thermophys Heat Transf. 2016;31(2):390–402.

    Article  Google Scholar 

  45. Hassani S, Saidur R, Mekhilef S, Hepbasli A. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf. 2015;90:121–30.

    Article  CAS  Google Scholar 

  46. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52(21):4675–82.

    Article  CAS  Google Scholar 

  47. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571.

    Article  CAS  Google Scholar 

  48. Patankar SV. Numerical heat transfer and fluid flow. London: Taylor & Francis; 1980.

    Google Scholar 

  49. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the first ASME-JSME thermal engineering joint conference. 1983. vol. 1, pp. 323–329.

  50. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7339-z.

    Article  Google Scholar 

  51. Rashidi S, Bovand M, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis. Energy Convers Manag. 2015;103:726–38.

    Article  Google Scholar 

  52. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.

    Article  CAS  Google Scholar 

  53. Montgomery DC. Design and analysis of experiments. New York: Wiley; 2008.

    Google Scholar 

  54. Shirvan KM, Mirzakhanlari S, Mamourian M, Kalogirou SA. Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: a sensitivity analysis and numerical simulation. Appl Energy. 2017;195:725–37.

    Article  Google Scholar 

  55. Zheng N, Liu P, Liu Z, Liu W. Numerical simulation and sensitivity analysis of heat transfer enhancement in a flat heat exchanger tube with discrete inclined ribs. Int J Heat Mass Transf. 2017;112:509–20.

    Article  Google Scholar 

  56. Ostromsky T, Dimov I, Alexandrov V, Zlatev Z. Preparing input data for sensitivity analysis of an air pollution model by using high-performance supercomputers and algorithms. Comput Math Appl. 2015;70(11):2773–82.

    Article  Google Scholar 

  57. Mohamed OA, Masood SH, Bhowmik JL. Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl Math Model. 2016;40(23):10052–73.

    Article  Google Scholar 

  58. Diel CL, Canevesi RLS, Zempulski DA, Awadallak JA, Borba CE, Palú F, Silva EA. Optimization of multiple-effect evaporation in the pulp and paper industry using response surface methodology. Appl Therm Eng. 2016;95:18–23.

    Article  Google Scholar 

  59. Scheffe H. The analysis of variance. New York: Wiley; 1999.

    Google Scholar 

  60. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq. 2016;220:1–13.

    Article  CAS  Google Scholar 

  61. Rashidi S, Bovand M, Esfahani JA. Optimization of partitioning inside a single slope solar still for performance improvement. Desalination. 2016;395:79–91.

    Article  CAS  Google Scholar 

  62. Vahedi S, Zare Ghadi A, Valipour M. Application of response surface methodology in the optimization of magneto-hydrodynamic flow around and through a porous circular cylinder. J Mech. 2018. https://doi.org/10.1017/jmech.2018.1.

    Article  Google Scholar 

  63. Rashidi S, Bovand M, Esfahani JA. Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy. 2015;88:385–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Masoud Vahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pordanjani, A.H., Vahedi, S.M., Rikhtegar, F. et al. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim 135, 1031–1045 (2019). https://doi.org/10.1007/s10973-018-7652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7652-6

Keywords

Navigation