Skip to main content
Log in

Synthesis, structural, magnetic and magnetocaloric properties of La0.8Sr0.2MnO3 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we reported a detailed study on the synthesis, structural and magnetic properties of nanocrystalline La0.8Sr0.2MnO3. The synthesized nanoparticles were prepared using a sol–gel method and characterized using X-ray diffraction and high-resolution transmission electron microscope. The average particle size was found in the range from 40 to 45 nm. The magnetization versus temperature M(T) measurements as well as magnetization field dependence M(H) have been investigated using vibrating-sample magnetometer. The magnetization as a function of temperature M(T) indicated a broad second-order magnetic phase transition from ferromagnetic state to paramagnetic state in the Curie temperature region (320–340 K). The magnetocaloric effect of the sample has been estimated and presented a maximum magnetic entropy change |ΔSM|max = 0.86 J kg−1 K−1 with relative cooling power = 62.12 J kg−1 at magnetic field (H) = 2T. Based on the result of magnetocaloric properties, the investigated sample could be considered as a good refrigerant material for near room temperature magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Phan M-H, Yu S-C. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308(2):325–40. https://doi.org/10.1016/j.jmmm.2006.07.025.

    Article  CAS  Google Scholar 

  2. Bohigas X, del Barco E, Sales M, Tejada J. Magnetocaloric effect in La0.65Ca0.35Ti1−xMnxO3 ceramic perovskites. J Magn Magn Mater. 1999;196–197:455–7. https://doi.org/10.1016/S0304-8853(98)00812-9.

    Article  Google Scholar 

  3. Gordon JE, Fisher RA, Jia YX, Phillips NE, Reklis SF, Wright DA, et al. Specific heat of Nd(1−x)SrxMnO3. J Magn Magn Mater. 1998;177–181(Part 2):856–7. https://doi.org/10.1016/S0304-8853(97)00305-3.

    Article  Google Scholar 

  4. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N, Cheikhrouhou A. Influence of transition metal doping (Fe Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int. 2015;41(8):10177–84. https://doi.org/10.1016/j.ceramint.2015.04.123.

    Article  CAS  Google Scholar 

  5. M’nassri R, Cheikhrouhou A. Magnetocaloric properties in ordered double-perovskite Ba2Fe1−xCrxMoO6 (0 ≤ x ≤ 1). J Korean Phys Soc. 2014;64(6):879–85. https://doi.org/10.3938/jkps.64.879.

    Article  CAS  Google Scholar 

  6. Dan’kov SY, Tishin AM, Pecharsky VK, Gschneidner KA. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B. 1998;57(6):3478–90.

    Article  Google Scholar 

  7. M’nassri R, Chniba Boudjada N, Cheikhrouhou A. Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J Alloys Compd. 2015;626:20–8. https://doi.org/10.1016/j.jallcom.2014.11.141.

    Article  CAS  Google Scholar 

  8. Moumen M, Mehri A, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A. Structural, magnetic and magnetocaloric properties in Pr0.5M0.1Sr0.4MnO3 (M = Eu, Gd and Dy) polycrystalline manganites. J Alloy Compd. 2011;509(37):9084–8. https://doi.org/10.1016/j.jallcom.2011.06.045.

    Article  CAS  Google Scholar 

  9. Thompson JMT, Ziese M. Colossal magnetoresistance, half metallicity and spin electronics. Philos Trans R Soc Lond Ser A Math Phys Eng Sci. 2000;358(1765):137–50. https://doi.org/10.1098/rsta.2000.0524.

    Article  Google Scholar 

  10. Balcells L, Enrich R, Mora J, Calleja A, Fontcuberta J, Obradors X. Manganese perovskites: thick-film based position sensors fabrication. Appl Phys Lett. 1996;69(10):1486–8. https://doi.org/10.1063/1.116916.

    Article  CAS  Google Scholar 

  11. Jin S, McCormack M, Tiefel TH, Ramesh R. Colossal magnetoresistance in La–Ca–Mn–O ferromagnetic thin films (invited). J Appl Phys. 1994;76(10):6929–33. https://doi.org/10.1063/1.358119.

    Article  CAS  Google Scholar 

  12. Lisauskas A, Khartsev SI, Grishin A. Tailoring the colossal magnetoresistivity: La0.7(Pb0.63Sr0.37)0.3MnO3 thin-film uncooled bolometer. Appl Phys Lett. 2000;77(5):756–8. https://doi.org/10.1063/1.127109.

    Article  CAS  Google Scholar 

  13. Lussier A, Dvorak J, Stadler S, Holroyd J, Liberati M, Arenholz E, et al. Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces. Thin Solid Films. 2008;516(6):880–4. https://doi.org/10.1016/j.tsf.2007.04.049.

    Article  CAS  Google Scholar 

  14. Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, et al. Perovskite-type oxides La1−xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J Power Sources. 2008;178(2):683–6. https://doi.org/10.1016/j.jpowsour.2007.08.007.

    Article  CAS  Google Scholar 

  15. Phan M-H, Peng H-X, Yu S-C, Tho ND, Nhat HN, Chau N. Manganese perovskites for room temperature magnetic refrigeration applications. J Magn Magn Mater. 2007;316(2):e562–5. https://doi.org/10.1016/j.jmmm.2007.03.021.

    Article  CAS  Google Scholar 

  16. Dormann JL, Fiorani D, Tronc E. On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater. 1999;202(1):251–67. https://doi.org/10.1016/S0304-8853(98)00627-1.

    Article  CAS  Google Scholar 

  17. Iacob N, Schinteie G, Bartha C, Palade P, Vekas L, Kuncser V. Effects of magnetic dipolar interactions on the specific time constant in superparamagnetic nanoparticle systems. J Phys D Appl Phys. 2016;49(29):295001.

    Article  CAS  Google Scholar 

  18. Jönsson EP. Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv Chem Phys. 2004;128:191–248. arXiv:cond-mat/0310684v2.

  19. Suzuki M, Fullem SI, Suzuki IS, Wang L, Zhong C-J. Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys Rev B. 2009;79(2):024418.

    Article  CAS  Google Scholar 

  20. Subhankar B, Wolfgang K. Supermagnetism. J Phys D Appl Phys. 2009;42(1):013001.

    Article  CAS  Google Scholar 

  21. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys Rev B. 1995;51(20):14103–9.

    Article  CAS  Google Scholar 

  22. Goodenough JB. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev. 1955;100(2):564–73.

    Article  CAS  Google Scholar 

  23. Ayadi F, Saadaoui F, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Sicard L, et al. Effect of monovalent doping on the physical properties of La0.7Sr0.3MnO3 compound synthesized using sol–gel technique. IOP Conf Ser Mater Sci Eng. 2012;28(1):012054.

    Article  CAS  Google Scholar 

  24. Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. London: Pearson Education Limited; 2014.

    Google Scholar 

  25. Cullity BD. Elements of X-ray diffraction. 2nd ed. Reading: Addison-Wesley Publishing Company Inc.; 1978.

    Google Scholar 

  26. Egilmez M, Chow KH, Jung J. Percolative model of the effect of disorder on the resistive peak broadening in La23Ca13MnO3 near the metal-insulator transition. Appl Phys Lett. 2008;92(16):162515. https://doi.org/10.1063/1.2908931.

    Article  CAS  Google Scholar 

  27. Soh Y-A, Aeppli G, Mathur ND, Blamire MG. Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films. Phys Rev B. 2000;63(2):020402.

    Article  Google Scholar 

  28. M’nassri R, Chniba-Boudjada N, Cheikhrouhou A. 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite. J Alloys Compd. 2015;640:183–92. https://doi.org/10.1016/j.jallcom.2015.03.220.

    Article  CAS  Google Scholar 

  29. Tishin AM, Spichkin I. The magnetocaloric effect and its applications. Bristol: Institute of Physics Publishing; 2003.

    Book  Google Scholar 

  30. Phan M-H, Yu S-C, Hur NH, Jeong Y-H. Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. J Appl Phys. 2004;96(2):1154–8. https://doi.org/10.1063/1.1762710.

    Article  CAS  Google Scholar 

  31. Pękała M, Drozd V. Magnetocaloric effect in nano- and polycrystalline La0.8Sr0.2MnO3 manganites. J Non-Cryst Solids. 2008;354(47–51):5308–14. https://doi.org/10.1016/j.jnoncrysol.2008.06.112.

    Article  CAS  Google Scholar 

  32. Pękała M, Drozd V. Magnetocaloric effect in La0.8Sr0.2MnO3 manganite. J Alloy Compd. 2008;456(1–2):30–3. https://doi.org/10.1016/j.jallcom.2007.02.092.

    Article  CAS  Google Scholar 

  33. Zhang X, Fan J, Xu L, Hu D, Zhang W, Zhu Y. Magnetic and magnetocaloric properties of nanocrystalline La0.5Sr0.5MnO3. Ceram Int. 2016;42(1, Part B):1476–81. https://doi.org/10.1016/j.ceramint.2015.09.093.

    Article  CAS  Google Scholar 

  34. Xi S, Lu W, Sun Y. Magnetic properties and magnetocaloric effect of La0.8Ca0.2MnO3 nanoparticles tuned by particle size. J Appl Phys. 2012;111(6):063922. https://doi.org/10.1063/1.3699037.

    Article  CAS  Google Scholar 

  35. Ben Khlifa H, Ayadi F, M’nassri R, Cheikhrouhou-Koubaa W, Schmerber G, Cheikhrouhou A. Screening of the synthesis route on the structural, magnetic and magnetocaloric properties of La0.6Ca0.2Ba0.2MnO3 manganite: a comparison between solid-solid state process and a combination polyol process and spark plasma sintering. J Alloy Compd. 2017;712:451–9. https://doi.org/10.1016/j.jallcom.2017.04.101.

    Article  CAS  Google Scholar 

  36. Choura-Maatar S, M’nassri R, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK. Sodium-deficiency effects on the structural, magnetic and magnetocaloric properties of La0.8Na0.2−xxMnO3 (0 ≤ x ≤ 0.15). J Magn Magn Mater. 2017;433:239–47. https://doi.org/10.1016/j.jmmm.2017.03.026.

    Article  CAS  Google Scholar 

  37. Mleiki A, M’nassri R, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil EK. Structural characterization, magnetic, magnetocaloric properties and critical behavior in lacunar La0.5Eu0.2Ba0.2□0.1MnO3 nanoparticles. J Alloy Compd. 2017;727:1203–12. https://doi.org/10.1016/j.jallcom.2017.08.236.

    Article  CAS  Google Scholar 

  38. Banerjee BK. On a generalised approach to first and second order magnetic transitions. Phys Lett. 1964;12(1):16–7. https://doi.org/10.1016/0031-9163(64)91158-8.

    Article  Google Scholar 

  39. Le’vy LP. Magnetism and superconductivity. Berlin: Springer; 2000.

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the Nanotechnology and Advanced Material Central Lab., ARC, Giza, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Rahman T. AboZied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaheldin, T.A., Ghani, A.A., AboZied, A.ER.T. et al. Synthesis, structural, magnetic and magnetocaloric properties of La0.8Sr0.2MnO3 nanoparticles. J Therm Anal Calorim 136, 621–627 (2019). https://doi.org/10.1007/s10973-018-7642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7642-8

Keywords

Navigation