Skip to main content
Log in

Thermal investigations of the Sn–Zn–O gels obtained by sol–gel method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

ZnO–SnO2 nanostructures are of great interest in practical applications such as optoelectronic devices, gas sensors and catalyst supports due to their excellent optoelectronic and highly sensitive gas sensing properties. In the present work, oxide powders of Sn, Sn/Zn = 1:1, Sn/Zn = 1:2 and Zn were synthesized by sol–gel method. Thermal behavior of the obtained gels was determined by thermogravimetry and differential thermal analysis coupled on-line with mass spectrometry (TG/DTA–MS) in air and nitrogen atmosphere. In air, endothermic effects due to the decomposition of the precursors and exothermic effects due to the oxidation of the organic part were observed. In the case of nitrogen atmosphere, only endothermic effects take place. The XRD and FTIR investigations have shown the same structure both for DTA resulted residues in air and for samples isothermally treated at 500 °C for 1 h. Based on the obtained results, the thermal treatment of the samples was established depending on their intended applications. In the experimental conditions used, the formation of ZnSnO3 was not confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schmidt-Mende L, MacManus-Driscoll JL. ZnO: nanostructures, defects, and devices. Mater Today. 2007;10(5):40–8.

    Article  CAS  Google Scholar 

  2. Pan J, Shen H, Mathur S. One-dimensional SnO2 nanostructures: synthesis and applications. J Nanotechnol. 2012;2012:1–12.

    Article  CAS  Google Scholar 

  3. Dattoli EN, Wan Q, Guo W, Chen Y, Pan X, Lu W. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 2007;7(8):2463–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Cao J, Fang B, Lu P, Deng S, Wang H. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Mater Lett. 2005;59:1405–8.

    Article  CAS  Google Scholar 

  5. Khairy M, Amin NH, Kamal R. Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. J Therm Anal Calorim. 2017;128:1811–24.

    Article  CAS  Google Scholar 

  6. Gac W, Zawadzki W, Słowik G, Greluk M, Pawlonka J, Machocki A. Chromium-modified zinc oxides. J Therm Anal Calorim. 2016;125:1205–15.

    Article  CAS  Google Scholar 

  7. Mohamed SH. SnO2 dendrites–nanowires for optoelectronic and gas sensing applications. J Alloys Compd. 2012;510:119–24.

    Article  CAS  Google Scholar 

  8. Wang ZL. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano. 2008;2:1987–92.

    Article  CAS  PubMed  Google Scholar 

  9. Chaari M, Matoussi A. Electrical conduction and dielectric studies of ZnO pellets. Phys B Condens Matter. 2012;407:3441–7.

    Article  CAS  Google Scholar 

  10. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005;98:041301.

    Article  CAS  Google Scholar 

  11. Chesler P, Hornoiu C, Mihaiu S, Vlăduţ C, Calderon Moreno JM, Anastasescu M, Moldovan C, Firtat B, Brasoveanu C, Muscalu G, Stan I, Gartner M. Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide. Beilstein J Nanotechnol. 2016;7:2045–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Firtat B, Moldovan C, Brasoveanu C, Muscalu G, Gartner M, Zaharescu M, Chesler P, Hornoiu C, Mihaiu S, Vlăduţ C, Dascalu I, Georgescu V, Stan I. Miniaturised MOX based sensors for pollutant and explosive gases detection. Sens Actuators, B. 2017;249:647–55.

    Article  CAS  Google Scholar 

  13. Toader Al, Mihaiu S, Voicescu M, Anastasescu M, Stroescu H, Nicolescu M, Atkinson I, Gartner M, Zaharescu M. Optical investigations of tin and zinc oxides as TCOs films. In: Advance Topic in Optoelectronics, Microelectronics, and Nanotechnology VI, Proceedings of SPIE, vol 8411. 2012.

  14. Mihaiu S, Atkinson I, Mocioiu O, Toader A, Tenea E, Zaharescu M. Phase formation mechanism in the ZnO–SnO2 binary system. Rev Roum Chim. 2011;56:465–9.

    CAS  Google Scholar 

  15. Mihaiu S, Toader A, Atkinson I, Mocioiu OC, Hornoiu C, Teodorescu VS, Zaharescu M. Advanced ceramics in the SnO2–ZnO binary system. Ceram Int. 2015;41:4936–45.

    Article  CAS  Google Scholar 

  16. Holmelund E, Schou J, Tougaard S, Larsen NB. Pure and Sn-doped ZnO films produced by pulsed laser deposition. Appl Surf Sci. 2002;197:467–71.

    Article  Google Scholar 

  17. Jabeen G, Riaz S, Naseem S. Synthesis and characterization of Zn-doped and un-doped SnO2 nanostructures for PV applications. In: The 2012 world congress on advances in civil, environmental, and materials research (ACEM’ 12), August 26–30, Seoul, Korea. 2012. p. 2175–88. http://www.iasem.org/publication_conf/acem12/T5E-II-3.pdf.

  18. Chongsri K, Bangbai C, Techitdheera W, Pecharapa W. Characterization and photoresponse properties of Sn-doped ZnO thin films. Energy Proc. 2013;34:721–7.

    Article  CAS  Google Scholar 

  19. Kumar AS, Nagaraja KK, Nagaraja HS. Polymer assisted preparation and characterization of ZnO and Sn doped ZnO nanostructures. In: IOP conference series materials science and engineering. 2015;73: 012077.

  20. Caglar Y, Aksoy S, Ilican S, Caglar M. Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices Microstruct. 2009;46:469–75.

    Article  CAS  Google Scholar 

  21. Firooz AA. A low temperature hydrothermal synthesis of ZnO doped SnO2 nanoparticles with high photocatalytic activity. Int J Nanosci Nanotechnol. 2016;12:1–5.

    Google Scholar 

  22. Faisal M, Ibrahim AA, Harraz FA, Bouzid H, Al-Assiri M, Ismail AA. SnO2 doped ZnO nanostructures for highly efficient photocatalyst. J Mol Catal A: Chem. 2015;379:19–25.

    Article  CAS  Google Scholar 

  23. Chen WJ, Liu WL, Hsieh SH, Tsai TK. Preparation of nanosized ZnO using α brass. Appl Surf Sci. 2007;253:6749–53.

    Article  CAS  Google Scholar 

  24. Liu J, Huang X, Duan J, Ai H, Tu P. A low-temperature synthesis of multiwhisker-based zinc oxide micron crystals. Mater Lett. 2005;59:3710–4.

    Article  CAS  Google Scholar 

  25. Huang Y, He J, Zhang Y, Dai Y, Gu Y, Wang S, Zhou C. Morphology, structures and properties of ZnO nanobelts fabricated by Zn-powder evaporation without catalyst at lower temperature. J Mater Sci. 2006;41:3057–62.

    Article  CAS  Google Scholar 

  26. Nikoobakht B, Wang X, Herzing A, Shi J. Scable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials. Chem Soc Rev. 2013;42:342–65.

    Article  CAS  PubMed  Google Scholar 

  27. Shen YS, Zhang TS. Preparation, structure and gas-sensing properties of ultramicro ZnSnO3 powder. Sens. Actuators B Chem. 1993;12:5–9.

    Article  CAS  Google Scholar 

  28. Kovacheva D, Petrov K. Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ion. 1998;109:327–32.

    Article  CAS  Google Scholar 

  29. Prasad RL, Kushwaha A, Szilágyi IM, Kótai L. Solid-state thermal degradation behaviour of 1-D coordination polymers of Ni(II) and Cu(II) bridged by conjugated ligand. J Therm Anal Calorim. 2013;114:653–64.

    Article  CAS  Google Scholar 

  30. Mihaiu S, Szilágyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarasz J, Pokol G, Zaharescu M. Thermal study on the synthesis of the doped ZnO to be used in TCO films. J Therm Anal Calorim. 2016;124:71–80.

    Article  CAS  Google Scholar 

  31. Chang LJ, Hou XY, Cao Q. Effect of Zn/Sn ratio on structure and properties of ZnO–SnO2 nanocomposite films. J Alloys Compd. 2014;611:219–24.

    Article  CAS  Google Scholar 

  32. Tuncolua IG, Aciksari C, Suvaci E, Ozel E, Rembeza SI, Rembeza ES, Plotnikova YE, Kosheleva NN, Svistova TV. Synthesis of Zn2SnO4 powders via hydrothermal method for ceramic targets. J Eur Ceram Soc. 2015;35:3885–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I. M. Szilágyi thanks for a János Bolyai Research Fellowship of the Hungarian Academy of Sciences and an ÚNKP-17-4-IV-BME-188 grant supported by the ÚNKP-17-4-IV New National Excellence Program of the Ministry of Human Capacities, Hungary. The research within project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. An NRDI K 124212 and an NRDI TNN_16 123631 grants are acknowledged. A Romanian Academy–Hungarian Academy of Sciences Joint Research Project for Research Mobility is acknowledged. We acknowledge as well the support of the EU (ERDF) and Romanian Government that allowed for the acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM—No. 19/01.03.2009, and PN-II-PT-PCCA-2013-4-1487 project, Electronic Nose for detection of low concentration pollutant and explosive gases.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Maria Vladut, Teodóra Nagyné Kovács or Irina Atkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladut, C.M., Mihaiu, S., Szilágyi, I.M. et al. Thermal investigations of the Sn–Zn–O gels obtained by sol–gel method. J Therm Anal Calorim 136, 461–470 (2019). https://doi.org/10.1007/s10973-018-7641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7641-9

Keywords

Navigation