Skip to main content
Log in

The thermal property and flame retardancy of RPC with a polyelectrolyte complex of nanocrystalline cellulose and ammonium polyphosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyelectrolyte complexes (PECs) with nanocrystalline cellulose and ammonium polyphosphate (NCC/APP) were prepared by an accessibly oriented self-assembly method, and the morphology and ultrastructure were investigated with transmission electron micrographs, scanning electric microscopy, Fourier infrared, and X-ray diffraction. The prepared PECs were then used as a flame-retardant system in rice straw-HDPE composites (RPC), and the thermal degradation, flame retardancy, and mechanical properties were studied by thermogravimetry, cone calorimetry, limited oxygen index (LOI) and mechanical testing. The thermal stability and flame retardancy of RPC were significantly influenced with an incorporation of PECs. PECs can promote the thermal degradation of RPC that take place earlier and stabilize the char residues. PECs can significantly improve the LOI of RPC, and LOI increased to 24.8% and 25.0% in the presence of NCC1/APP and NCC5/APP. PECs had a slight effect on heat release rate. PECs can also improve the mechanical property of RPC, and the tensile and flexural strength were increased with the addition of PECs of NCC/APP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rossi LM. Wood-plastic composites: putting innovation on a faster track. The eighth international conference on wood fiber-plastic composites. Madison, WI, USA, 2005;3–6.

  2. Pan MZ, Zhang SY, Zhou DG. Preparation and properties of wheat straw fiber-polypropylene composites. Part II. Investigation of surface treatments on the thermo-mechanical and rheological properties of the composites. J Compos Mater. 2010;44:1061–73.

    Article  CAS  Google Scholar 

  3. Kozlowski R, Wladyka-Przybylak M. Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol. 2008;19:446–53.

    Article  CAS  Google Scholar 

  4. Borysiak S, Paukszta D, Helwig M. Flammability of wood-polypropylene composites. Polym Degrad Stab. 2006;91:3339–43.

    Article  CAS  Google Scholar 

  5. Stark NM, White RH, Mueller SA, Osswald TA. Evaluation of various fire retardants for use in wood flour-polyethylene composites. Polym Degrad Stab. 2010;95:1903–10.

    Article  CAS  Google Scholar 

  6. Schartel B, Braun U, Schwarz U, Reinemann S. Fire retardancy of polypropylene/flax blends. Polymer. 2003;44:6241–50.

    Article  CAS  Google Scholar 

  7. Li B, He JM. Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood-fibre composites. Polym Degrad Stab. 2004;83:241–6.

    Article  CAS  Google Scholar 

  8. Sun L, Wu Q, Xie Y, Song K, Lee S, Wang Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim. 2016;123:309–18.

    Article  CAS  Google Scholar 

  9. Bergaya F, Mandalia T, Amigouet P. A brief survey on CLAYPEN and nanocomposites based on unmodified PE and organo-pillared clays. Colloid Polym Sci. 2005;283:773–82.

    Article  CAS  Google Scholar 

  10. Du B, Fang Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polym Degrad Stab. 2011;96:1725–31.

    Article  CAS  Google Scholar 

  11. Pan MZ, Mei CT, Du J, Li GC. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites. Compos A. 2014;66:128–34.

    Article  CAS  Google Scholar 

  12. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.

    Article  CAS  Google Scholar 

  13. Rubentheren V, Ward TA, Chee CY, Nair P. Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose. 2015;22:2529–41.

    Article  CAS  Google Scholar 

  14. Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B. 2015;75:176–200.

    Article  CAS  Google Scholar 

  15. Mariano M, Kissi NE, Dufresne A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Polym Phys. 2014;52:791–806.

    Article  CAS  Google Scholar 

  16. Shopsowitz KE, Kelly JA, Hamad WY, MacLachlan MJ. Biopolymer templated glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater. 2014;24:327–38.

    Article  CAS  Google Scholar 

  17. Luo FB, Wu K, Guo HL, Zhao Q, Liang LY, Lu MG. Effect of cellulose whisker and ammonium polyphosphate on thermal properties and flammability performance of rigid polyurethane foam. J Therm Anal Calorim. 2015;122:717–23.

    Article  CAS  Google Scholar 

  18. Pan MZ, Zhou XY, Chen MZ. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioResources. 2013;8(1):933–43.

    Article  Google Scholar 

  19. Araki J, Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir. 2001;17:4493–6.

    Article  CAS  Google Scholar 

  20. Ni JX, Tai QL, Lu HD, Hu Y, Song L. Microencapsulated ammonium polyphosphate with polyurethane shell: preparation, characterization, and its flame retardance in polyurethane. Polym Adv Technol. 2010;21:392–400.

    Article  CAS  Google Scholar 

  21. Savadekar NR, Mhaske ST. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Poly. 2012;89:146–51.

    Article  CAS  Google Scholar 

  22. Giese M, Blusch LK, Khan MK, Hamad WY, MacLachlan MJ. Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed. 2014;53:8880–4.

    Article  CAS  Google Scholar 

  23. Pan MZ, Gan XH, Mei CT, Liang YF. Structural analysis and transformation of biosilica during lignocellulose fractionation of rice straw. J Mol Struct. 2017;1127:575–82.

    Article  CAS  Google Scholar 

  24. Chen Z, Dong C, Li Q, Bai Y, Lu Z. Preparation of linear piperazine/phosphorous/polysiloxane copolymer and its application on cotton fabrics. J Therm Anal Calorim. 2017;130:1997–2005.

    Article  CAS  Google Scholar 

  25. Guan YH, Huang JQ, Yang JC, Shao ZB, Wang YZ. An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res. 2015;54:3524–31.

    Article  CAS  Google Scholar 

  26. Wang BB, Qian XD, Shi YQ, Yu B, Hong NN, Song L, Hua Y. Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos B. 2015;69:22–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Natural Science Foundation of China (Grant No. 31670556), Science Fund for Distinguished Young Scholars of Nanjing Forestry University (NLJQ2015-02), and Qing Lan Project and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhu Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Chen, H., Jiang, D. et al. The thermal property and flame retardancy of RPC with a polyelectrolyte complex of nanocrystalline cellulose and ammonium polyphosphate. J Therm Anal Calorim 134, 2089–2096 (2018). https://doi.org/10.1007/s10973-018-7639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7639-3

Keywords

Navigation