Skip to main content
Log in

ANN approach for irreversibility analysis of vapor compression refrigeration system using R134a/LPG blend as replacement of R134a

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper experimentally evaluated the irreversibility in the components (compressor, condenser, capillary tube, and evaporator) of the vapor compression refrigeration system (VCRS) using R134a/LPG refrigerant as a replacement for R134a. For this aim, different tests were conducted for various evaporator and condenser temperatures under controlled surrounding conditions. The results reported that the irreversibilities in the components of VCRS using R134a/LPG blend were found lesser than irreversibilities in the components of VCRS using R134a under similar experimental conditions. Artificial neural network (ANN) models were developed to predict the second law of efficiency and total irreversibility of the refrigeration system. ANN and ANFIS model predictions were also compared with experimental results and an absolute fraction of variance in range of 0.980–0.994 and 0.951–0.977, root-mean-square error in the range of 0.1636–0.2387 and 0.2501–0.4542 and mean absolute percentage error in the range of 0.159–0.572 and 0.308–0.931%, respectively, were estimated. The outcomes suggested that ANN model shows better statistical prediction than ANFIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

e :

Specific exergy, kJ kg−1

S :

Entropy, kJ kg−1K−1

T :

Temperature, K

I :

Irreversibility, kW

P :

Pressure, Bar

h :

Enthalpy, kJ kg−1

W :

Compressor power, kW

Q :

Refrigeration capacity, kW

M R :

Refrigerant charge, g

LPG:

Liquefied petroleum gas

ANN:

Artificial neural network

ANFIS:

Adaptive neuro-fuzzy inference system

ξ :

Mass flow rate, kg s−1

η ex :

Second law efficiency, %

evap:

Evaporator

Cap:

Capillary

Comp:

Compressor

Cond:

Condenser

in:

Inlet

Out:

Outlet

b:

Boundary

o:

Dead state

f:

Fluid

References

  1. Buzelin LOS, Amico SC, Vargas JVC, Parise JAR. Experimental development of an intelligent refrigeration system. Int J Refrig. 2005;28:165–75.

    Article  Google Scholar 

  2. Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview. Renew Sustain Energy Rev. 2017;73:1247–64.

    Article  CAS  Google Scholar 

  3. Harby K, Gebaly DR, Koura NS, Hassan MS. Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew Sustain Energy Rev. 2016;58:347–60.

    Article  Google Scholar 

  4. Gill J, Singh J. Energetic and exergetic performance analysis of the vapor compression refrigeration system using adaptive neuro-fuzzy inference system approach. Exp Thermal Fluid Sci. 2017;88:246–60.

    Article  Google Scholar 

  5. Hepbasli A. Thermoeconomic analysis of household refrigerators. Int J Energy Res. 2007;31:947–59.

    Article  Google Scholar 

  6. Kabul A, Kizilkan O, Yakut AK. Performance and Energetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a). Int J Energy Res. 2008;32:824–36.

    Article  CAS  Google Scholar 

  7. Ahamed JU, Saidur R, Masjuki HH. Thermodynamic performance analysis of R-600 and R-600a as a refrigerant. Eng E-Trans. 2010;5:11–8.

    Google Scholar 

  8. Bolaji BO. Experimental study of R152a and R32 to replace R134a in a domestic refrigerator. Energy. 2010;35:3793–8.

    Article  CAS  Google Scholar 

  9. Ozgur AE, Kabul A, Kizilkan O. Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a. Int J Low-Carbon Technol. 2014;9:56–62.

    Article  CAS  Google Scholar 

  10. Saravanakumar R, Selladurai V. Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. J Therm Anal Calorim. 2014;115(1):933–40.

    Article  CAS  Google Scholar 

  11. El-Morsi Mohamed. Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators. Energy. 2015;86:344–53.

    Article  CAS  Google Scholar 

  12. Golzari S, Kasaeian A, Daviran S, Mahian O, Wongwises S, Sahin AZ. Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant. Int J Refrig. 2017;73:134–43.

    Article  CAS  Google Scholar 

  13. Dowlati M, Aghbashlo M, Soufiyan MM. Exergetic performance analysis of an ice-cream manufacturing plant: a comprehensive survey. Energy. 2017;123:445–59.

    Article  Google Scholar 

  14. Raveendran PS, Sekhar SJ. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as a condenser. J Therm Anal Calorim. 2017;127:2439–46.

    Article  CAS  Google Scholar 

  15. Gill J, Singh J. Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant. Int J Refrig. 2017;84:287–99.

    Article  CAS  Google Scholar 

  16. Mohanraj M, Jayaraj S, Muraleedharan C. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res. 2011;35:647–69.

    Article  CAS  Google Scholar 

  17. Mohanraj M, Jayaraj S, Muraleedharan C, Chandrasekar P. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int J Therm Sci. 2009;48:1036–42.

    Article  CAS  Google Scholar 

  18. Mohanraj M, Jayaraj S, Muraleedharan C. Exergy assessment of a direct expansion solar-assisted heat pump working with R22 and R407C/LPG mixture. Int J Green Energy. 2010;7(1):65–83.

    Article  CAS  Google Scholar 

  19. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—a review. Renew Sustain Energy Rev. 2012;16:1340–58.

    Article  Google Scholar 

  20. Sowparnika GC, Thirumarimurugan M, Sivakumar VM. Performance prediction of refrigeration systems by artificial neural networks. Int J Adv Res Electr Electron Instrum Eng. 2015;4:7673–81.

    Google Scholar 

  21. Esen H, Inalli M, Sengur A, Esen M. Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Syst Appl. 2008;35:1940–8.

    Article  Google Scholar 

  22. Onder K. Thermodynamic analysis of a variable speed refrigeration system using artificial neural networks. Expert Syst Appl. 2011;38:11686–92.

    Article  Google Scholar 

  23. Tong L, Yin S, Xie Y, Wang L, Yue X, Wang G. Intelligent simulation on refrigeration system using artificial neural network. In: International conference on natural computation; 2010. p. 1709–11.

  24. Li N, Xia L, Shiming D, Xu X, Chan MY. Steady-state operating performance modelling and prediction for a direct expansion air conditioning system using artificial neural network. Build Serv Eng Res Technol. 2012;33:281–92.

    Article  Google Scholar 

  25. Belman-Flores JM, Ledesma SE, Garcıa MG, Ruiz J, Rodrıguez- Munoz JL. Analysis of a variable speed vapor compression system using artificial neural network. Expert Syst Appl. 2013;40:4362–9.

    Article  Google Scholar 

  26. Ledesma S, Belman-Flores JM. Application of artificial neural networks for generation of energetic maps of a variable speed compression system working with R1234yf. Appl Therm Eng. 2014;69:105–12.

    Article  CAS  Google Scholar 

  27. Belman-Flores JM, Ledesma S. Statistical analysis of the energy performance of a refrigeration system working with R1234yf using artificial neural networks. Appl Therm Eng. 2015;82:8–17.

    Article  CAS  Google Scholar 

  28. Cao X, Li ZY, Shao LL, Zhang CL. Refrigerant flows through electronic expansion valve: experiment and neural network modeling. Appl Therm Eng. 2016;92:210–8.

    Article  CAS  Google Scholar 

  29. Hosoz M, Ertunc HM. Modelling of a cascade refrigeration system using artificial neural network. Int J Energy Res. 2016;30:1200–15.

    Article  Google Scholar 

  30. Rashidi MM, Aghagoli A, Raoofi R. Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network. Energy. 2017;129:201–15.

    Article  CAS  Google Scholar 

  31. Gill J, Singh J. Use of Artificial Neural Network approach for depicting mass flow rate of R134a/LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system. Int J Refrig. 2018;86:228–38.

    Article  CAS  Google Scholar 

  32. Rashidi MM, Ali M, Freidoonimehr N, Nazari F. Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy. 2013;55(1):497–510.

    Article  Google Scholar 

  33. Rashidi MM, Anwar Bég O, Basiri Parsa A, Nazari F. Analysis and optimization of a transcritical power cycle with regenerator using artificial neural networks and genetic algorithms. Proc Inst Mech Eng Part A J Power Energy. 2011;225(6):701–17.

    Article  CAS  Google Scholar 

  34. Padmanabhan VMV, Palanisamy S. The use of TiO2 nanoparticles to reduce refrigerator IR-reversibility. Energy Convers Manag. 2012;59:122–32.

    Article  CAS  Google Scholar 

  35. Gill J, Singh J. Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant. Int J Refrig. 2017;84:287–99.

    Article  CAS  Google Scholar 

  36. Gill J, Singh J. Performance analysis of vapor compression refrigeration system using an adaptive neuro-fuzzy inference system. Int J Refrig. 2017;82:436–46.

    Article  CAS  Google Scholar 

  37. Gill J, Singh J. An applicability of ANFIS approach for depicting energetic performance of VCRS using mixture of R134a and LPG as refrigerant. Int J Refrig. 2018;85:353–75.

    Article  CAS  Google Scholar 

  38. ISO, International Standard Organization, International Standard-8187, Household refrigerating appliances (refrigerators/freezers) characteristics and test methods. International Organization for Standardization, Switzerland; 1991.

  39. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  40. Ledesma S, Ibarra-Manzano MA, Garcıa-Hernandez MG, Almanza-Ojeda DL. Neural lab a simulator for artificial neural networks. In: Computing conference IEEE; 2017, p. 716–21.

  41. Masters T. Practical neural network recipes in C ++. San Diego: Academic Press, Inc; 1993.

    Google Scholar 

  42. Gill J, Singh J. Experimental analysis of R134a/LPG as replacement of R134a in a vapor-compression refrigeration system. Int J Air-Cond Refrig. 2017;25:1750015.

    Article  CAS  Google Scholar 

  43. Gill J, Singh J. Adaptive neuro-fuzzy inference system approach to predict the mass flow rate of R134a/LPG refrigerant for straight and helical coiled adiabatic capillary tubes in the vapor compression refrigeration system. Int J Refrig. 2017;78:166–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the IKG PTU, Kapurthala, BCET Gurdaspur, and Covenant University, Ogun State, Nigeria, for their excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Gill.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, J., Singh, J., Ohunakin, O.S. et al. ANN approach for irreversibility analysis of vapor compression refrigeration system using R134a/LPG blend as replacement of R134a. J Therm Anal Calorim 135, 2495–2511 (2019). https://doi.org/10.1007/s10973-018-7437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7437-y

Keywords

Navigation