Skip to main content
Log in

Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigates the mixed convection of MHD Maxwell, Jeffery, and Oldroyd-B nanofluid models with heat source/sink over a cone geometry. The nonlinear ordinary differential equations are solved numerically by using Runge–Kutta-based shooting technique for transformed systems. Moreover, the non-homogenous Buongiorno’s model is employed, which accounts for both the impact of thermophoresis and Brownian motion of the nanofluids. The accuracy of the numerical data is obtained by comparison against the existed results in the literature. Furthermore, the effects of important physical parameters such as thermophoresis, Biot number, Brownian motion, and magnetic field parameters on the concentration, temperature, and velocity profiles are evaluated in this research. As the vital outcome of this research, it is revealed that the heat and mass transfer rates are more significant in Jeffery model than other two models Maxwell and Oldroyd-B nanofluid models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Christensen RM. Theory of Viscoelasticity. J Appl Mech. 1982;38:720.

    Article  Google Scholar 

  2. Oldroyd JG. On the formulation of rheological equations of state. Proc R Soc Lond Ser A Math Phys Eng Sci. 1950;200:523–41.

    Article  CAS  Google Scholar 

  3. Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc A Math Phys Eng Sci. 1922;102:161–79.

    Article  Google Scholar 

  4. Hayat T, Alsaedi A. On thermal radiation and joule heating effects in MHD flow of an Oldroyd-B fluid with thermophoresis. Arab J Sci Eng. 2011;36:1113–24.

    Article  Google Scholar 

  5. Raju CSK, Sandeep N, Gnaneswara Reddy M. Effect of nonlinear thermal radiation on 3D Jeffrey fluid flow in the presence of homogeneous–heterogeneous reactions. Int J Eng Res Afr. 2016;21:52–68.

    Article  Google Scholar 

  6. Nadeem S, Saleem S. Analytical study of rotating non-Newtonian nanofluid on a rotating cone. J Thermophys Heat Transf. 2014;28:295–302.

    Article  CAS  Google Scholar 

  7. Khan NA, Khan S, Riaz F. Analytic approximate solutions and numerical results for stagnation point flow of Jeffrey fluid towards an off-centered rotating disk. J Mech. 2015;31:201–15.

    Article  Google Scholar 

  8. Mehmood R, Nadeem S, Akbar N. Oblique stagnation flow of Jeffrey fluid over a stretching convective surface: optimal solution. Int J Numer Methods Heat Fluid Flow. 2015;25:454–71.

    Article  Google Scholar 

  9. Raju CSK, Jayachandra Babu M, Sandeep N. Chemically reacting radiative MHD Jeffrey nanofluid flow over a cone in porous medium. Int J Eng Res Afr. 2015;19:75–90.

    Article  Google Scholar 

  10. Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A. 2006;358:396–403.

    Article  CAS  Google Scholar 

  11. Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan Inst Chem Eng. 2014;45:121–6.

    Article  CAS  Google Scholar 

  12. Ashraf MB, Hayat T, Shehzad SA, Alsaedi A. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition. AIP Adv. 2015;5:027134.

    Article  Google Scholar 

  13. Hayat T, Muhammad T, Shehzad SA, Chen GQ, Abbas IA. Interaction of magnetic field in flow of Maxwell nanofluid with convective effect. J Magn Magn Mater. 2015;389:48–55.

    Article  CAS  Google Scholar 

  14. Abbasi FM, Shehzad SA, Hayat T, Ahmad B. Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption. J Magn Magn Mater. 2016;404:159–65.

    Article  CAS  Google Scholar 

  15. Hayat T, Qayyum S, Shehzad SA, Alsaedi A. Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface. Results Phys. 2017;7:562–73.

    Article  Google Scholar 

  16. Turkyilmazoglu M, Pop I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int J Heat Mass Transf. 2013;57:82–8.

    Article  Google Scholar 

  17. Abbasi FM, Shehzad SA, Hayat T, Alsaedi A, Obid MA. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid. AIP Adv. 2015;5:037111.

    Article  Google Scholar 

  18. Zin NAM, Khan I, Shafie S. The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J Mol Liq. 2016;222:138–50.

    Article  CAS  Google Scholar 

  19. Hayat T, Shehzad SA, Alsaedi A. Three-dimensional flow of an Oldroyd-B fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. J Hydrol Hydromech. 2014;62:117–25.

    Article  CAS  Google Scholar 

  20. Sajid M, Ahmed B, Abbas Z. Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet. J Egypt Math Soc. 2015;23:440–4.

    Article  Google Scholar 

  21. Raju CSK, Sandeep N. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J Mol Liq. 2016;215:115–26.

    Article  CAS  Google Scholar 

  22. Shehzad SA, Abdullah Z, Abbasi FM, Hayat T, Alsaedi A. Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface. J Magn Magn Mater. 2016;399:97–108.

    Article  CAS  Google Scholar 

  23. Khan N, Mahmood T. Thermophoresis particle deposition and internal heat generation on MHD flow of an Oldroyd-B nanofluid between radiative stretching disks. J Mol Liq. 2016;216:571–82.

    Article  CAS  Google Scholar 

  24. Raju CSK, Sandeep N. Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: a numerical study. J Magn Magn Mater. 2017;421:216–24.

    Article  CAS  Google Scholar 

  25. Raju CSK, Sandeep N, Malvandi A. Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J Mol Liq. 2016;221:108–15.

    Article  CAS  Google Scholar 

  26. Anilkumar D, Roy S. Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl Math Comput. 2004;155:545–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Rahbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koteswara Reddy, G., Yarrakula, K., Raju, C.S.K. et al. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim 132, 1995–2002 (2018). https://doi.org/10.1007/s10973-018-7115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7115-0

Keywords

Navigation