Skip to main content
Log in

Influence of different tanning agents on bovine leather thermal degradation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of the paper consists in studying the thermal behavior of chrome-free tanned bovine leather (wet-white), using a new product based on titanium and aluminum salts, compared with the same leather tanned by chromium salts (wet-blue). The aim is to find a possibility for replacing the wet-blue leather, containing Cr (III) salts, with the environmentally friendly wet-white leather. The thermal behavior was studied by dynamic thermogravimetry in nitrogen atmosphere, up to 700 °C. Global kinetic thermal decomposition parameters values were obtained with the isoconversional integral method of Flynn–Wall–Ozawa. The kinetic model best describing the thermal degradation process and the kinetic parameters for each individual stage were determined from non-isothermal data by means of a multivariate nonlinear regression method. The evolved gases analysis was conducted on a coupling to a quadrupole mass spectrometer and a Fourier transform infrared spectrophotometer equipped with external modulus for gas analysis. FTIR, microscopic, and elementary composition studies of residues were conducted. There was found that the differences in non-isothermal decomposition kinetics, evolved gases, and residue analyses were dependent on the nature of the two used tanning agents. It was observed that the wet-white leather exhibited lower thermal stability and temperatures of evolved gases. The metal concentrations in the residues and their porous and fibrillar morphologies recommend them as possible candidates for obtaining cost-friendly adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Liu CK, Latona NP, Ashby R, Ding K. Environmental effects on chrome–free leather. J Am Leather Chem Assoc. 2006;101:368–75.

    CAS  Google Scholar 

  2. Joseph K, Nithya N. Material flows in the life cycle of leather. J Clean Prod. 2009;17:676–82.

    Article  CAS  Google Scholar 

  3. Rosu L, Varganici CD, Crudu AM, Rosu D, Bele A. Ecofriendly wet-white leather vs. conventional tanned wet-blue leather. A photochemical approach. J Clean Prod. 2018;177:708–20.

    Article  CAS  Google Scholar 

  4. Basil-Jones MM, Edmonds RL, Cooper SM, Haverkamp RG. Collagen fibril orientation in ovine and bovine leather affects strength: a small angle X-ray scattering (SAXS) study. J Agric Food Chem. 2011;59:9972–9.

    Article  CAS  PubMed  Google Scholar 

  5. Covington AD. Quo vadit chromium? The future directions of tanning. J Am Leather Chem Assoc. 2008;103:7–23.

    CAS  Google Scholar 

  6. Deselnicu V. Wet–white tanning as alternative to chromium salt tanning. In: Deselnicu DC, editor. Inovation and competitiveness in the leather department. Bucharest: AGIR; 2014. p. 15–32.

    Google Scholar 

  7. Crudu M, Niculescu M, Deselnicu V, Sutiman D, Sibiescu D, Cailean A, Boca N. The process of obtaining and use of a range of chemicals with low toxicity to (pre) tanning natural leather. Romanian patent. No. A/00941/17.11.2009.

  8. Pietrucha K. Changes in denaturation and rheological properties of collagen–hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. 2005;36:299–304.

    Article  CAS  PubMed  Google Scholar 

  9. He L, Mu C, Shi J, Zhang Q, Shi B, Lin W. Modification of collagen with a natural cross–linker, procyanidin. Int J Biol Macromol. 2011;48:354–9.

    Article  CAS  PubMed  Google Scholar 

  10. Horn MM, Amaro Martins VC, de Guzzi Plepis AM. Interaction of anionic collagen with chitosan: effect on thermal and morphological characteristics. Carbohydr Polym. 2009;77:239–43.

    Article  CAS  Google Scholar 

  11. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes SL. Tg–Ms analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92:87–90.

    Article  CAS  Google Scholar 

  12. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes SL. Tg–Ms characterisation of pig bone in an inert atmosphere. J Therm Anal Calorim. 2007;88:405–9.

    Article  CAS  Google Scholar 

  13. Lozano LF, Peña-Rico MA, Heredia A, Ocotlán-Flores J, Gómez-Cortés A, Velázquez R, Belío IA, Bucio L. Thermal analysis study of human bone. J Mater Sci. 2003;38:4777–82.

    Article  CAS  Google Scholar 

  14. Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen–hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 2010;6:3957–68.

    Article  CAS  PubMed  Google Scholar 

  15. Manich AM, Cuadros S, Cot J, Carilla J, Marsal A. Determination of oxidation parameters of fatliquored leather by DSC. Thermochim Acta. 2005;429:205–11.

    Article  CAS  Google Scholar 

  16. Popescu C, Budrugeac P, Wortmann FJ, Miu L, Demco D, Baias M. Assessment of collagen–based materials which are supports of cultural and historical objects. Polym Degrad Stab. 2008;93:976–82.

    Article  CAS  Google Scholar 

  17. Nishad Fathima N, Pradeep Kumar M, Raghava Rao J, Nair BU. A DSC investigation on the changes in pore structure of skin during leather processing. Thermochim Acta. 2010;501:98–102.

    Article  CAS  Google Scholar 

  18. Cucos A, Budrugeac P, Miu L, Mitrea S, Sbarcea G. Dynamic mechanical analysis (DMA) of new and historical parchments and leathers. Correlations with DSC and XRD. Thermochim Acta. 2011;516:19–28.

    Article  CAS  Google Scholar 

  19. Bozec L, Odlyha M. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J. 2011;101:228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samouillan V, Lamure A, Lacabanne A. Dielectric relaxations of collagen and elastin in the dehydrated state. Chem Phys. 2000;255:259–71.

    Article  CAS  Google Scholar 

  21. Roduit B, Odlyha M. Prediction of thermal stability of fresh and aged parchment. J Therm Anal Calorim. 2006;85:157–64.

    Article  CAS  Google Scholar 

  22. Marcilla A, García AN, León M, Martínez P, Bañón E. Study of the influence of NaOH treatment on the pyrolysis of different leather tanned using thermogravimetric analysis and Py/GC–MS system. J Anal Appl Pyrol. 2011;92:194–201.

    Article  CAS  Google Scholar 

  23. Kurata S, Ichikawa K. Identification of small bits of natural leather by pyrolysis gas chromatography mass spectrometry. Bunseki Kagaku. 2008;57:563–9.

    Article  CAS  Google Scholar 

  24. Oliveira LCA, Guerreiro MC, Gonçalves M, Oliveira DQL, Costa LCM. Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide. Mater Lett. 2008;62:3710–2.

    Article  CAS  Google Scholar 

  25. Tôrres Filho A, Lange LC, de Melo GCB, Praes GE. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Manage. 2016;48:448–56.

    Article  CAS  Google Scholar 

  26. Cui HW, Jiu JT, Sugahara T, Nagao S, Suganuma K, Uchida H, Schroder KA. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119:425–33.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Friedman HL. Kinetic of thermal degradation of char forming plastics from thermogravimetry–application of phenolic plastics. J Polym Sci. 1965;C6:183–95.

    Google Scholar 

  29. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  30. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  31. Bañón E, Marcilla A, García AN, Martínez P, León M. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Manage. 2016;48:285–99.

    Article  CAS  Google Scholar 

  32. Crudu M, Deselnicu V, Deselnicu DC, Albu L. Valorization of titanium metal wastes as tanning agent used in leather industry. Waste Manage. 2014;34:1806–14.

    Article  CAS  Google Scholar 

  33. Crudu M, Maier S, Rosu D, Crudu IA. Eco–innovative products and technologies based on the recycling of certain wastes from tanneries and nonferrous metals industry for the transition of the leather industry to a circular economy model. In: Proceeding of 6th International Conference on Advanced Materials and Systems (ICAMS), Bucharest, 2016.

  34. Cucos A, Budrugeac P. Simultaneous TG/DTG–DSC–FTIR characterization of collagen in inert and oxidative atmospheres. J Therm Anal Calorim. 2014;115:2079–87.

    Article  CAS  Google Scholar 

  35. Liao LL, Chen WY, Shan ZH, Dan WH. Tanning chemistry and technology. Beijing: Science Press; 2005.

    Google Scholar 

  36. Worzakowska M, Torres-Garcia E. The effect of the grafting percentage of starch-g-poly(phenyl acrylate) copolymers on their pyrolysis and kinetics studied by the TG/DSC/FTIR/QMS-coupled method. Polym Degrad Stab. 2017;139:67–75.

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Termochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  38. Rosu D, Cascavaf CN, Ciobanu C, Rosu L. An investigation of the thermal degradation of epoxy maleate of bisphenol A. J Anal Appl Pyrol. 2004;72:191–6.

    Article  CAS  Google Scholar 

  39. Varganici CD, Durdureanu-Angheluta A, Rosu D, Pinteala M, Simionescu BC. Thermal degradation of magnetite nanoparticles with hydrophilic shell. J Anal Appl Pyrol. 2012;96:63–8.

    Article  CAS  Google Scholar 

  40. Rosu D, Rosu L, Varganici CD. The thermal stability of some semi–interpenetrated polymer networks based on epoxy resin and aromatic polyurethane. J Anal Appl Pyrol. 2013;100:103–10.

    Article  CAS  Google Scholar 

  41. Varganici CD, Paduraru OM, Rosu L, Rosu D, Simionescu BC. Thermal stability of some cryogels based on poly(vinyl alcohol) and cellulose. J Anal Appl Pyrol. 2013;104:77–83.

    Article  CAS  Google Scholar 

  42. Varganici CD, Rosu D, Barbu-Mic C, Rosu L, Popovici D, Hulubei C, Simionescu BC. On the thermal stability of some aromatic–aliphatic polyimides. J Anal Appl Pyrol. 2015;113:390–401.

    Article  CAS  Google Scholar 

  43. Varganici CD, Marangoci N, Rosu L, Barbu-Mic C, Rosu D, Pinteala M, Simionescu BC. TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host–guest architectures. J Anal Appl Pyrol. 2015;115:132–42.

    Article  CAS  Google Scholar 

  44. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA (n = 0) MXDA modified with POSS. J Therm Anal Calorim. 2009;96:575–82.

    Article  CAS  Google Scholar 

  45. YaA Lisochkin. Malakhov KV, Poznyak VI. Global kinetic parameters for determining the autoignition limits and induction periods for mixtures of methane, ammonia, oxygen, and nitrogen. Combust Explos Shock Waves. 2004;40:253–7.

    Article  Google Scholar 

  46. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  47. Opfermann J. Kinetic analysis using multivariate non–linear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  48. Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier Science; 1998. p. 179–81.

    Google Scholar 

  49. Xu W, Li J, Liu F, Jiang Y, Li Z, Li L. Study on the thermal decomposition kinetics and flammability performance of a flame–retardant leather. J Therm Anal Calorim. 2017;128:1107–16.

    Article  CAS  Google Scholar 

  50. Stevens FS, Jackson DS. Purification and amino acid composition of monomeric and polymeric collagens. Biochem J. 1967;104:534–6.

    Article  Google Scholar 

  51. Liang Q, Wu C, Wu Z, Liu M, Deng Y, Gong Q. Mass spectra of ethylene in intense laser fields. Chem Phys. 2009;360:13–7.

    Article  CAS  Google Scholar 

  52. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. New York: Wiley; 2005.

    Google Scholar 

  53. Hedberg YS, Lidén C, Wallinder IO. Correlation between bulk– and surface chemistry of Cr(III) and Cr(VI). J Hazard Mater. 2014;280:654–61.

    Article  CAS  PubMed  Google Scholar 

  54. Dettmer A, Nunes KGP, Gutterres M, Marcílio NR. Obtaining sodium chromate from ash produced by thermal treatment of leather wastes. Chem Eng J. 2010;160:8–12.

    Article  CAS  Google Scholar 

  55. Fathima N, Rao R, Nair BU. Tannery solid waste to treat toxic liquid wastes: a new holistic paradigm. Environ Eng Sci. 2012;29:363–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI Project Number PNII–PT–PCCA–2013–4–0436. Authors are grateful to Dr. Marian Crudu of the National Research & Development Institute for Textiles and Leather Division, Bucharest, Romania, for providing the wet–blue and wet–white leathers and Dr. Nita Tudorachi of the “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania, for recording the TG–FTIR–MS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Rosu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosu, L., Varganici, C., Crudu, A. et al. Influence of different tanning agents on bovine leather thermal degradation. J Therm Anal Calorim 134, 583–594 (2018). https://doi.org/10.1007/s10973-018-7076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7076-3

Keywords

Navigation