Skip to main content
Log in

Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Core/shell composites of CuC2O4·2H2O@AP and ZnC2O4·2H2O@AP were prepared from metal oxalates on suspended AP particles in ethanol. CuO and ZnO nano-metal oxides as the nano-catalysts were made from CuC2O4·2H2O and ZnC2O4·2H2O simultaneously by thermal decomposition of AP. The particle size of CuO nano-particles was very finer, and the ZnO particles showed a considerable growth during formation. The kinetic triplet of activation energy, frequency factor, and model of thermal decomposition of pure AP, CuC2O4·2H2O@AP, and ZnC2O4·2H2O@AP composites were estimated by applying three model-free (FWO, KAS, and Starink) and model-fitting (Starink) methods. Based on the thermal analysis, the CuC2O4@AP composite has better catalytic performance and the thermal decomposition temperature of AP decreased to about 126.44 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kadiresh PN, Sridhar BTN. Experimental study on ballistic behavior of an aluminized AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100:331–5.

    Article  CAS  Google Scholar 

  2. John A, Christopher J. Chemistry of pyrotechnics basic principles and theory. Chromatographia. 2012;75:79–80.

    Article  Google Scholar 

  3. Lang AJ, Vyazovkin S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame. 2006;145:779–90.

    Article  CAS  Google Scholar 

  4. Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd. 2008;464:532–6.

    Article  CAS  Google Scholar 

  5. Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.

    Article  Google Scholar 

  6. Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z. Synthesis of chrysalis-like CuO nanocrystals and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Chem Sci. 2009;121:1077–81.

    Article  CAS  Google Scholar 

  7. Ayoman E, Hosseini SGh. Synthesis of CuO nano powders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123:1213–24.

    Article  CAS  Google Scholar 

  8. Zheng MS, Wang Z, Wu JQ, Wang Q. Synthesis of nitrogen-doped ZnO nanocrystallites with one-dimensional structure and their catalytic activity for ammonium perchlorate decomposition. J Nanopart Res. 2010;12:2211–9.

    Article  CAS  Google Scholar 

  9. Zou M, Jiang X, Lu L, Wang X. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J Hazard Mater. 2012;225(226):124–30.

    Article  Google Scholar 

  10. Xu H, Wang X, Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol. 2008;185:176–80.

    Article  CAS  Google Scholar 

  11. Zheng X, Li P, Zheng S, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Cu(OH)2·2Cr(OH)3 nanoparticles. Powder Technol. 2014;268:446–51.

    Article  CAS  Google Scholar 

  12. Joshi SS, Patil PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. Def Sci J. 2008;58:721–7.

    Article  CAS  Google Scholar 

  13. Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.

    Article  Google Scholar 

  14. Hosseini SG, Ahmadi R, Ghavi A, Kashia A. Synthesis and characterization of α Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technol. 2015;278:316–22.

    Article  CAS  Google Scholar 

  15. Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.

    Article  CAS  Google Scholar 

  16. Mostaan H, Karimzadeh F, Abbasi MH. Non-isothermal kinetic studies on the formation of Al2O3/Nb composite. Thermochim Acta. 2010;511:32–6.

    Article  CAS  Google Scholar 

  17. Subramanian S, Valantina R, Ramanathan C. Structural and electronic properties of CuO, CuO2 and Cu2O nanoclusters—a DFT approach. Mater Sci. 2015;21:173–8.

    Google Scholar 

  18. Moravec VD, Klopcic SA, Chatterjee B, Jarrold CC. The electronic structure of ZnO and ZnF determined by anion photoelectron spectroscopy. Chem Phys. 2001;341:313–8.

    CAS  Google Scholar 

  19. Rahimi-Nasrabadi M, Pourmortazavi SM, Davoudi-Dehaghan AA, Hajimirsadeghi SS, Zahedi MM. Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. Cryst Struct Commun. 2013;15:40–77.

    Google Scholar 

  20. Ahmed MD. Synthesis identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3012–30.

    Google Scholar 

  21. Chen L, Zhu D. The particle dimension controlling synthesis of a-MnO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;27:69–72.

    Article  CAS  Google Scholar 

  22. Zhang L, Liu R, Yang H. Preparation and sonocatalytic activity of monodisperse porous bread-like CuO via thermal decomposition of copper oxalate precursors. Physica E. 2012;44:1592–7.

    Article  CAS  Google Scholar 

  23. Shang C, Barnabé A. Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater Charact. 2013;86:206–11.

    Article  CAS  Google Scholar 

  24. Athare AE, Nikumbh AK, Kolhe NH. Direct current electrical conductivity study of the thermal decomposition of copper(II) monohydrate and zinc(II) oxalate dehydrate. RJPBCS. 2013;4:110–28.

    CAS  Google Scholar 

  25. Khairetdinov EF, Mulina TV, Boldyrev VV. Nucleation mechanism during low-temperature decomposition of ammonium perchlorate. J Solid State. 1976;17:213–9.

    Article  CAS  Google Scholar 

  26. Voelk HR. Thermal decomposition and explosion of ammonium perchlorate propellant and ammonium perchlorate propellant up to 50 kilobars (5.0*109 N/m2). NASA TN D. 1970; 6013: 21–44.

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  28. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  29. Hosseini SG, Ayoman E. Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball milling method and investigation of their catalytic activity. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5969-6.

    Google Scholar 

  30. Babar Z, Malik AQ. Kinetics of thermal decomposition of nano magnesium oxide catalyzed ammonium perchlorate. J Chem Soc Pak. 2014;36:6–12.

    Google Scholar 

  31. Babar Z, Malik AQ. Thermal decomposition and kinetic evaluation of composite propellant material catalyzed with nano magnesium oxide. J Eng Sci. 2014;7:5–14.

    Google Scholar 

  32. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion-time curves. Chemom Intell Lab. 2009;96:219–26.

    Article  CAS  Google Scholar 

  33. Segal E. Rate equations of solid state reactions. Euclidean and fractal models. Rev Roum Chim. 2012;57:491–3.

    CAS  Google Scholar 

  34. Akbar J, Iqbal MS, Massey S, Masih R. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers. Carbohyd Polym. 2012;90:1386–93.

    Article  CAS  Google Scholar 

  35. Burnham A. Computational aspects of kinetic analysis. Part D: the ICTAC kinetics project-multi-thermal-history model-model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355:165–70.

    Article  CAS  Google Scholar 

  36. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  37. Chen D, Gao X, Dollimore D. A generalized form of the Kissinger equation. Thermochim Acta. 1993;215:109–17.

    Article  CAS  Google Scholar 

  38. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  40. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Part A. 1966;70:487–523.

    Article  CAS  Google Scholar 

  41. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  42. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Sci Technol. 1971;16:22–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, M., Farrokhpour, H. & Tahriri, M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants. J Therm Anal Calorim 132, 879–893 (2018). https://doi.org/10.1007/s10973-018-7018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7018-0

Keywords

Navigation