Skip to main content
Log in

Investigation of the thermoelectrical properties of the Sn91.2−x–Zn8.8–Agx alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sn91.2−x–Zn8.8–Agx alloys (x = 0.15–10.0 wt%) were directionally solidified upwards at a constant G (4.16 K mm−1) and V (41.5 μm s−1) in a Bridgman-type directional solidification furnace. The electrical resistivity (ρ) measurements of the alloys depending on the temperature were performed using the standard four-point probe method, and the temperature coefficients of the resistivities (α) were calculated. Composition analyses of the alloys were carried out using energy-dispersive X-ray spectroscopy. The enthalpy (∆H) and the specific heat (∆Cp) values of the alloys were determined by differential scanning calorimetry analysis. The thermal conductivity (K) values were obtained from the Wiedemann–Franz equation. According to the experimental results, electrical resistivities increased up to 3.0 mass% Ag and decreased with further increase in Ag content. Enthalpy and specific heat values decreased with the increasing content of Ag. The results were compared with the previous works for Sn–Zn–Ag alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Verhoeven JD. Fundamentals of physical metallurgy. New York: Wiley; 1975.

    Google Scholar 

  2. Kurz W, Fisher DJ. Fundamentals of solidification. 3rd ed. Aedermannsdorf: Trans Tech Publications; 1989.

    Google Scholar 

  3. Gündüz M, Çadırlı E. Directional solidification of aluminium-copper alloys. Mater Sci Eng A. 2002;327:167–85.

    Article  Google Scholar 

  4. Peng P, Li X, Su Y, Li J, Guo J, Fu H. Dependence of microhardness on solidification processing parameters and dendritic spacing in directionally solidified Sn–Ni peritectic alloys. J Alloy Compd. 2015;618:49–55.

    Article  CAS  Google Scholar 

  5. Dong S, Chen R, Guo J, Ding H, Su Y, Fu H. Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible directional solidification. Mater Sci Eng A. 2014;614:67–74.

    Article  CAS  Google Scholar 

  6. Hu X, Li K, Min Z. Microstructure evolution and mechanical properties of Sn0.7Cu0.7Bi lead-free solders produced by directional solidification. J Alloy Compd. 2013;566:239–45.

    Article  CAS  Google Scholar 

  7. Yan Y, Ding H, Kang Y, Song J. Microstructure evolution and mechanical properties of Nb–Si based alloy processed by electromagnetic cold crucible directional solidification. Mater Des. 2014;55:450–5.

    Article  CAS  Google Scholar 

  8. Shnawah DA, Said SBM, Sabri MFM, Badruddin IA, Che FX. High-reliability low-Ag content Sn–Ag–Cu solder joints for electronics applications. J Electron Mater. 2012;41:2631–58.

    Article  CAS  Google Scholar 

  9. Che FX, Pang JHL. Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn–3.8Ag–0.7Cu solder joints. J Alloys Compd. 2012;541:6–13.

    Article  CAS  Google Scholar 

  10. Alam ME, Nai SML, Gupta M. Development of high strength Sn–Cu solder using copper particles at nanolength scale. J Alloys Compd. 2009;476:199–206.

    Article  CAS  Google Scholar 

  11. Bui QV, Jung SB. Characterization of low speed shear test reliability of Sn–1.0Ag XCe/ENEPIG solder joint. J Alloys Compd. 2013;560:54–61.

    Article  CAS  Google Scholar 

  12. Lee JE, Kim KS, Inoue M, Jiang J, Suganuma K. Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. J Alloy Compd. 2008;454:310–20.

    Article  CAS  Google Scholar 

  13. Wenxue C, Songbai X, Hui W, Yuhua H. Effects of Ag on properties of Sn–9Zn lead-free solder. Rare Metal Mat Eng. 2010;39:1702–6.

    Article  Google Scholar 

  14. Tsai YL, Hwang WS. Solidification behavior of Sn–9Zn–xAg lead-free solder alloys. Mater Sci Eng A. 2005;413–414:312–6.

    Article  Google Scholar 

  15. Song JM, Lui TS, Lan GF, Chen LH. Resonant vibration behavior of Sn–Zn–Ag solder alloys. J Alloy Compd. 2004;379:233–9.

    Article  CAS  Google Scholar 

  16. Hung FY, Wang CJ, Huang SM, Chen LH, Lui TS. Thermoelectrical characteristics and tensile properties of Sn–9Zn–xAg lead-free solders. J Alloy Compd. 2006;420:193–8.

    Article  CAS  Google Scholar 

  17. El-Daly AA, Hammad AE. Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn–9Zn lead-free solders. Mater Sci Eng A. 2010;527:5212–9.

    Article  Google Scholar 

  18. Ahmed M, Fouzder T, Sharif A, Gain AK, Chan YC. Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Microelectron Reliab. 2010;50:1134–41.

    Article  CAS  Google Scholar 

  19. El-Daly AA, Hammad AE. Elastic properties and thermal behavior of Sn–Zn based lead-free solder alloys. J Alloy Compd. 2010;505:793–800.

    Article  CAS  Google Scholar 

  20. Şahin M. The directional solidification of binary and ternary metallic alloys and investigation the physical properties of them. Ph.D. thesis, Niğde University, Nigde, 2012.

  21. Smiths FM. Measurement of sheet resistivities with the four-point probe. Bell Syst Technol J. 1958;37:711–8.

    Article  Google Scholar 

  22. Topsoe H. Geometric factor in four-point resistivity measurement. Semiconductor division no. 472-13 (Vedbaek), 1968:38.

  23. Çolak H, Türkoğlu O. Structural and electrical studies of Cu-doped CdO prepared by solid state reaction. Mater Sci Semicond Process. 2013;16:712–7.

    Article  Google Scholar 

  24. Kittel C. Introduction to solid state physics. 6th ed. New York: Wiley; 1965.

    Google Scholar 

  25. Kumar GS, Prasad G, Pohl RO. Review experimental determinations of the Lorenz number. J Mater Sci. 1993;28:4261–72.

    Article  CAS  Google Scholar 

  26. Ohtani H, Miyashita M, Ishida K. Thermodynamic study of phase equilibria in the Sn–Ag–Zn system. J Jpn Instrum Methods. 1999;63:685–94.

    Article  CAS  Google Scholar 

  27. Karakurt F. The directional solidification of Ag added Sn–8.8 wt% Zn eutectic alloy and investigation the physical properties. M.Sc. thesis, Niğde University, Nigde, 2015.

  28. Gancarz T, Pstrus J. Characteristics of Sn–Zn cast alloys with the addition of Ag and Cu. Arch Metall Mater. 2015;60:1603–7.

    Article  CAS  Google Scholar 

  29. Kamal M, Meikhail MS, El-Bediwi AB, Gouda ES. Study of structural changes and properties for Sn–Zn9 lead-free solder alloy with addition of different alloying elements. Radiat Eff Defect Solids. 2005;160:45–52.

    Article  CAS  Google Scholar 

  30. Yao Y, Fry J, Fine ME, Keer LM. The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials. Acta Mater. 2013;61:1525–36.

    Article  CAS  Google Scholar 

  31. Olafsson P, Sandstrom R, Karlsson A. Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J Mat Sci. 1997;32:4383–90.

    Article  CAS  Google Scholar 

  32. Chang TC, Hon MH, Wang MC. Thermal characteristics and intermetallic compounds formed at Sn–9Zn–0.5Ag/Cu interface. Mater Trans. 2004;45:606–13.

    Article  CAS  Google Scholar 

  33. Wu YK, Lin KL, Salam B. Specific heat capacities of Sn–Zn-based solders and Sn–Ag–Cu solders measured using differential scanning calorimetry. J Electron Mater. 2009;38:227–30.

    Article  CAS  Google Scholar 

  34. Xiao LB, Zhao FQ, Luo Y, Li N, Gao HX, Xue YQ, Cui ZX, Hu RZ. Thermal behavior and safety of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calorim. 2016;123:653–7.

    Article  CAS  Google Scholar 

  35. Srivastava A, Tiwari SN, Upadhyay AN, Zulfequar M, Khan SA. First-order phase transformation and structural studies in Se85In15−xZn x chalcogenide glasses. Therm Anal Calorim. 2017;129:1435–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Niğde Ömer Halisdemir University Scientific Research Project Unit under Contract No: FEB 2013/18. The authors would like to thank to Niğde University Scientific Research Project Unit for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, M., Çadırlı, E., Bayram, Ü. et al. Investigation of the thermoelectrical properties of the Sn91.2−x–Zn8.8–Agx alloys. J Therm Anal Calorim 132, 317–325 (2018). https://doi.org/10.1007/s10973-017-6939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6939-3

Keywords

Navigation