Skip to main content
Log in

Research on synthesis and thermodynamic properties of 2-methoxycyclohexanol

Synthesis and determination of the specific heat capacity, standard enthalpy change of combustion and standard enthalpy change of formation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

2-Methoxycyclohexanol is synthesized through an alcoholysis reaction of cyclohexene oxide and methanol with Ag2CsPW12O40 as catalyst. The elemental analyzer, FT-IR, GC, and NMR are used to analyze and confirm elements, functional groups, purity, and molecular structure of 2-methoxycyclohexanol. The equation between the specific heat capacity (C p) and the temperature from 280 to 340 K is fitted by the results of differential scanning calorimeter to examine 2-methoxycyclohexanol. Bomb calorimeter is introduced to determine the standard enthalpy change of combustion of 2-methoxycyclohexanol (− 3938.6 ± 2.0 kJ mol−1). The standard enthalpy of formation has been calculated as − 816.88 ± 2.21 kJ mol−1, based on Hess’s law. These basic thermodynamic parameters are deemed to facilitate the exploitation of new production route of 2-methoxycyclohexanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fuganti C, Grasselli P, Mendozza M, Servi S, Zucchi G. Microbially-aided preparation of (S)-2-methoxycyclohexanone key intermediate in the synthesis of sanfetrinem. Tetrahedron. 1997;53(7):2617–24. https://doi.org/10.1016/S0040-4020(96)01152-0.

    Article  CAS  Google Scholar 

  2. Iranpoor N, Mohammadpour Baltork I. 2,3-Dichloro-5,6-dicyano-p-benzoquinone, an efficient, mild, neutral and highly regioselective catalyst for alcoholysis of epoxides. Tetrahedron Lett. 1990;31(5):735–8. https://doi.org/10.1016/S0040-4039(00)94616-1.

    Article  CAS  Google Scholar 

  3. Yoo DW, Yoo SK, Kim C, Lee JK. A novel mononuclear Fe(III) mono(terpyridine) complex having labile solvent ligands and its catalytic activity. J Chem Soc Dalton Trans. 2002;21(21):3931–2.

    Article  Google Scholar 

  4. Lakshmi Kantam M, Aziz K, Jeyalakshmi K, Likhar PR. Bis(cyclopentadienyl)zirconium dichloride: an efficient catalyst for highly selective formation of β-alkoxy alcohols via ring opening of 1,2-epoxides with alcohols. Catal Lett. 2003;89(1):95–7. https://doi.org/10.1023/a:1024727727995.

    Article  CAS  Google Scholar 

  5. Jiang D, Mallat T, Krumeich F, Baiker A. Copper-based metal-organic framework for the facile ring-opening of epoxides. J Catal. 2008;257(2):390–5.

    Article  CAS  Google Scholar 

  6. Pourali AR, Ghayeni S, Afghahi F. ChemInform abstract: efficient and regioselective ring-opening of epoxides with alcohols and sodium azide by using catalytic amounts of GaCl3/polyvinylpyrrolidone. Bull Korean Chem Soc. 2013;34(6):1741–4.

    Article  CAS  Google Scholar 

  7. Kawamorita S, Hamasaka G, Ohmiya H, Hara K, Fukuoka A, Sawamura M. Hydrogenation of hindered ketones catalyzed by a silica-supported compact phosphine–Rh system. Org Lett. 2008;10(20):4697–700.

    Article  CAS  Google Scholar 

  8. Pilař R, Honcová P, Koštál P, Sádovská G, Svoboda L. Modified stepwise method for determining heat capacity by DSC. J Therm Anal Calorim. 2014;118(1):485–91.

    Article  Google Scholar 

  9. Pak J, Qiu W, Pyda M, Nowak-Pyda E, Wunderlich B. Can one measure precise heat capacities with DSC or TMDSC? J Therm Anal Calorim. 2005;82(3):565–74. https://doi.org/10.1007/s10973-005-0935-8.

    Article  CAS  Google Scholar 

  10. Piekarski H, Tkaczyk M, Wasiak M. Heat capacity of aqueous 2-(2-hexyloxyethoxy)ethanol solutions by DSC. J Therm Anal Calorim. 2005;82(3):711–8. https://doi.org/10.1007/s10973-005-0954-5.

    Article  CAS  Google Scholar 

  11. Gotcu-Freis P, Cupid DM, Rohde M, Seifert HJ. New experimental heat capacity and enthalpy of formation of lithium cobalt oxide. J Chem Thermodyn. 2015;84:118–27. https://doi.org/10.1016/j.jct.2014.12.007.

    Article  CAS  Google Scholar 

  12. ASTM norm E1269-11. Standard test method for determining specific heat capacity by differential scanning calorimetry, Pennsylvania, ASTM International. http://www.astm.org/Standards/E1269.htm.

  13. Han XW, Zhou CR, Shi XH. Determination of specific heat capacity and standard molar combustion enthalpy of taurine by DSC. J Therm Anal Calorim. 2012;109(1):441–6. https://doi.org/10.1007/s10973-011-1670-y.

    Article  CAS  Google Scholar 

  14. Maksimuk Y, Ponomarev D, Sushkova A, Krouk V, Vasarenko I, Antonava Z. Standard molar enthalpy of formation of vanillin. J Therm Anal Calorim. 2017;. https://doi.org/10.1007/s10973-017-6651-3.

    Google Scholar 

  15. Xu F, Sun LX, Tan ZC, Liang JG, Di YY, Tian QF, et al. Low-temperature heat capacities and standard molar enthalpy of formation of aspirin. J Therm Anal Calorim. 2004;76(2):481–9.

    Article  CAS  Google Scholar 

  16. Di YY, Tan ZC, Sun XH, Wang MH, Xu F, Liu YF, et al. Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O). J Chem Thermodyn. 2004;36(2):79–86. https://doi.org/10.1016/j.jct.2003.08.017.

    Article  CAS  Google Scholar 

  17. Shi Q, Tan ZC, Tong B, Di YY, Zhang ZH, Zeng JL, et al. Low-temperature heat capacity and standard molar enthalpy of formation of crystalline 2-pyridinealdoxime (C6H6N2O). J Chem Thermodyn. 2007;39(5):817–21. https://doi.org/10.1016/j.jct.2006.09.016.

    Article  CAS  Google Scholar 

  18. Sabbah R, Xu WA, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331(2):93–204. https://doi.org/10.1016/S0040-6031(99)00009-X.

    Article  CAS  Google Scholar 

  19. Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87(2):159.

    Article  CAS  Google Scholar 

  20. Wang M, Lei H, Hou Z, Wang S. Heat capacities and standard molar enthalpy of formation of pyrimethanil maleic salt and pyrimethanil fumaric salt. J Therm Anal Calorim. 2013;114(1):313–9. https://doi.org/10.1007/s10973-012-2853-x.

    Article  CAS  Google Scholar 

  21. Yu HG, Tan ZC, Liu Y, Lan XZ, Xu F, Huang XM, et al. Standard enthalpy of formation and heat capacities of 3,5-di-tert-butylsalicylic acid. Thermochim Acta. 2003;404(1–2):89–95. https://doi.org/10.1016/S0040-6031(03)00084-4.

    Article  CAS  Google Scholar 

  22. Certificate of Analysis Standard Reference Material 39j Benzoic Acid Calorimetric Standard. NBS W, 1995.

  23. Li HC, Fu B. Handbook of practical chemistry. Beijing: Chemical Industry Press; 2007.

    Google Scholar 

  24. Meng QY, Xu D, Di YY, Gao ZF, Dou JM. Low-temperature heat capacities and thermodynamic properties of ethyl 4-dimethylaminobenzoate (C11H15NO2). J Therm Anal Calorim. 2015;119(3):1923–30. https://doi.org/10.1007/s10973-014-4293-2.

    Article  CAS  Google Scholar 

  25. Qiang GL, Xu L, Bin D, Xu WY. Thermochemical studies on the thioproline. J Therm Anal Calorim. 2006;85(3):585–7. https://doi.org/10.1007/s10973-006-7630-2.

    Article  Google Scholar 

  26. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp.; 1989.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Iconic Innovation Project” plan of Henan Institute of Science and Technology (No. 2015BZ02), and the Henan Innovation Foundation for Higher Education (No. 2012HASTIT037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Shang, Y. & Zhang, Y. Research on synthesis and thermodynamic properties of 2-methoxycyclohexanol. J Therm Anal Calorim 131, 2197–2203 (2018). https://doi.org/10.1007/s10973-017-6784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6784-4

Keywords

Navigation