Skip to main content
Log in

Real-time thermo-optical analysis of polymer samples by quantitative polarized optical microscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental setup using a polarized optical microscope fitted with a detection module capable of measuring the cross-polarized transmitted light intensity and the transmitted light intensity of the polymer sample being analyzed, together with an accompanying calculation procedure, is proposed in order to characterize in real-time thermal transitions and degree of crystallinity, as well as birefringence (which is a measure of orientation) and turbidity. The experimental assessment of the technique was carried out studying commercial poly(ethylene terephthalate) multifilaments with different crystallinity and stretching levels and by direct comparison with the features of conventional DSC curves obtained under similar experimental conditions. While an excellent correlation was found between the type and temperature ranges of thermal events as detected by thermal and optical techniques, the measured birefringence was shown to be sensitive to distinct filament stretching levels, but unaffected by geometrical factors. Contrarily, turbidity is influenced by the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sondergaard K, Lyngaae-Jorgensen J. Rheo-physics of multiphase polymer systems. Lancaster, PA: Technomic Publishing Co., Inc; 1995.

    Google Scholar 

  2. Young V. Instrumental Methods of Analysis, Seventh Edition (Dean, John A.; Merritt, Lynne L., Jr.; Settle, Frank A., Jr.; Willard, Hobart H.). J Chem Educ. 1989;66(1):A46. doi:10.1021/ed066pA46.2.

    Article  Google Scholar 

  3. Schindler A, Doedt M, Gezgin Ş, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129(2):833–42. doi:10.1007/s10973-017-6208-5.

    Article  CAS  Google Scholar 

  4. Mathot VBF. Crystallization of polymers. J Therm Anal Calorim. 2010;102(2):403–12. doi:10.1007/s10973-010-0947-x.

    Article  CAS  Google Scholar 

  5. Meeten GH. Optical properties of polymers. Amsterdam: Springer; 1986.

    Google Scholar 

  6. Magill JH. A new method for following rapid rates of crystallization I. Poly(hexamethylene adipamide). Polymer. 1961;2:221–33. doi:10.1016/0032-3861(61)90025-8.

    Article  CAS  Google Scholar 

  7. Magill JH. A new technique for following rapid rates of crystallization II isotactic polypropylene. Polymer. 1962;3:35–42. doi:10.1016/0032-3861(62)90064-2.

    Article  CAS  Google Scholar 

  8. Ding Z, Spruiell JE. An experimental method for studying nonisothermal crystallization of polymers at very high cooling rates. J Polym Sci Part B Polym Phys. 1996;34(16):2783–804. doi:10.1002/(SICI)1099-0488(19961130)34:16<2783:AID-POLB12>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  9. Supaphol P, Spruiell JE. Nonisothermal bulk crystallization studies of high density polyethylene using light depolarizing microscopy. J Polym Sci Part B Polym Phys. 1998;36(4):681–92. doi:10.1002/(SICI)1099-0488(199803)36:4<681:AID-POLB14>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  10. Supaphol P, Spruiell JE. Nonisothermal bulk crystallization of high-density polyethylene via a modified depolarized light microscopy technique: further analysis. J Appl Polym Sci. 2002;86(4):1009–22. doi:10.1002/app.11121.

    Article  CAS  Google Scholar 

  11. da Cunha Santos AM, Cáceres CA, Calixto LS, Zborowski L, Canevarolo SV. In-line optical techniques to characterize the polymer extrusion. Polym Eng Sci. 2014;54(2):386–95. doi:10.1002/pen.23569.

    Article  Google Scholar 

  12. Mould ST, Barbas JM, Machado AV, Nóbrega JM, Covas JA. Monitoring the production of polymer nanocomposites by melt compounding with on-line rheometry. Int Polym Proc. 2012;27(5):527–34. doi:10.3139/217.2597.

    Article  CAS  Google Scholar 

  13. Zborowski L, Canevarolo SV. In-line turbidity monitoring of the second phase droplets deformation during extrusion. Polym Eng Sci. 2013;53(11):2422–8. doi:10.1002/pen.23490.

    Article  CAS  Google Scholar 

  14. De Clerck K, Rahier H, Van Mele B, Kiekens P. Thermal properties relevant to the processing of PET fibers. J Appl Polym Sci. 2003;89(14):3840–9. doi:10.1002/app.12543.

    Article  Google Scholar 

  15. Halliday D, Resnick R, Walker J. Fundamentals of Physics. New York: Wiley; 2010.

    Google Scholar 

  16. Hecht E. Optics, 3 ed. Reading, MA: Addison-Wesley; 1998.

    Google Scholar 

  17. Berl JH. Master Thesis, Universidade Federal de São Carlos. 2015.

  18. Berl JH, da Cunha Santos AM, Lucas AA, Canevarolo SV, editors. Quantitative characterization of polymer crystallization via instrumented polarized light optical microscopy. Regional Meeting da Polymer Processing Society PPS-Tel Aviv; 2014; Tel Aviv.

  19. van Krevelen DW, te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th ed. Amsterdam: Elsevier; 2009.

    Google Scholar 

  20. Fakirov S, Fischer EW, Hoffmann R, Schmidt GF. Structure and properties of poly(ethylene terephthalate) crystallized by annealing in the highly oriented state: 2. Melting behaviour and the mosaic block structure of the crystalline layers. Polymer. 1977;18(11):1121–9. doi:10.1016/0032-3861(77)90105-7.

    Article  CAS  Google Scholar 

  21. Elenga R, Seguela R, Rietsch F. Thermal and mechanical behaviour of crystalline poly(ethylene terephthalate): effects of high temperature annealing and tensile drawing. Polymer. 1991;32(11):1975–82. doi:10.1016/0032-3861(91)90161-B.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge UNIFI, ECOFABRIL and DOW, Brazil, for donating materials, as well as Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship to L. A. Bicalho, grant BJT 019/2012 to J. M. J. Silva, grant PVE 30484/2013-01 to J. A. Covas and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a PQ scholarship 311790/2013-5 to S. V. Canevarolo. The assistance of the technicians from DEMa is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Vicente Canevarolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bicalho, L.A., da Silva, J.M.J., Covas, J.A. et al. Real-time thermo-optical analysis of polymer samples by quantitative polarized optical microscopy. J Therm Anal Calorim 130, 2093–2103 (2017). https://doi.org/10.1007/s10973-017-6714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6714-5

Keywords

Navigation