Skip to main content
Log in

Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we present the results obtained during the investigation of thermal stability of antiparkinsonian drug Levodopa in oxidative atmosphere and under non-isothermal conditions. As investigational tools, thermoanalytical methods were used along with ATR-FTIR spectroscopy and later completed with kinetic study for the main degradative process that occurs in the 260–330 °C temperature range, at four heating rates. Four kinetic methods were used as follows: ASTM E698 which leads to an activation energy of 209.72 kJ mol−1, while isoconversional methods suggested the values 177.6 ± 13.1 kJ mol−1 (Friedman) and 188.8 ± 4.5 kJ mol−1 (Kissinger–Akahira–Sunose), with a clear indication of multistep degradation. The last method used was NPK, which revealed that the degradation occurs in three steps, with different physical and chemical contributions with mean activation energy equal to 191.3 ± 9.5 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s−1)

E :

Activation energy (kJ mol−1)

R :

Universal gas constant (8.314 J mol−1 K−1)

t :

Time (s)

T :

Temperature (°C or K)

f(α):

Differential form of kinetic mechanism function

g(α):

Integral form of kinetic mechanism function

α :

Conversion degree

β :

Heating rate (°C min−1)

k(T):

Rate constant

References

  1. Shastry BS. Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res. 2001;41(1):5–12.

    Article  CAS  Google Scholar 

  2. Cannazza G, Di Stefano A, Mosciatti B, Braghiroli D, Baraldi M, Pinnen F, Sozio P, Benatti C, Parenti C. Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of L-DOPA prodrugs by mean of HPLC-EC. J Pharm Biomed Anal. 2005;36:1079–84.

    Article  CAS  Google Scholar 

  3. Schapira AHV. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci. 2009;30:41–7.

    Article  CAS  Google Scholar 

  4. Safavi A, Tohidi M. Simultaneous kinetic determination of levodopa and carbidopa by H-point standard addition method. J Pharm Biomed Anal. 2007;44:313–8.

    Article  CAS  Google Scholar 

  5. Lee KE, Choi YJ, Oh BR, Chun IK, Gwak HS. Formulation and in vitro/in vivo evaluation of levodopa transdermal delivery systems. Int J Pharm. 2013;456(2):432–6.

    Article  CAS  Google Scholar 

  6. Li SF, Wu HL, Yu YJ, Li YN, Nie JF, Fu HY, Yu RQ. Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm. Talanta. 2010;81(3):805–12.

    Article  CAS  Google Scholar 

  7. http://www.drugbank.ca/drugs/DB01235. Accessed 5 Nov 2016.

  8. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.

    Article  CAS  Google Scholar 

  9. Murata M. Pharmacokinetics of L-dopa. J Neurol. 2006;253:47–52.

    Article  Google Scholar 

  10. Fuliaş A, Vlase G, Vlase T, Şuta L-M, Şoica C, Ledeţi I. Screening and characterization of cocrystal formation between carbamazepine and succinic acid. J Therm Anal Calorim. 2015;121(3):1081–6.

    Article  Google Scholar 

  11. Ledeţi I, Vlase G, Ciucanu I, Olariu T, Fuliaş A, Şuta L-M, Belu I. Analysis of solid binary systems containing simvastatin. Rev Chim. 2015;66(2):240–3.

    Google Scholar 

  12. Fuliaş A, Soica C, Ledeţi I, Vlase T, Vlase G, Şuta L-M, Belu A. Characterization of pharmaceutical acetylsalicylic acid - theophylline cocrystal obtained by slurry method under microwave irradiation. Rev Chim. 2014;65(11):1281–4.

    Google Scholar 

  13. Ilici M, Bercean V, Venter M, Ledeti I, Olariu T, Suta L-M, Fulias A. Investigations on the thermal-induced degradation of transitional coordination complexes containing (3h-2-thioxo-1,3,4-thiadiazol-5-yl)thioacetate moiety. Rev Chim. 2014;65(10):1142–5.

    CAS  Google Scholar 

  14. Fuliaş A, Vlase G, Ledeţi I, Şuta L-M. Ketoprofen-cysteine equimolar salt: synthesis, thermal analysis, PXRD and FTIR spectroscopy investigation. J Therm Anal Calorim. 2015;121(3):1087–91.

    Article  Google Scholar 

  15. Suta LM, Vlase G, Vlase T, Savoiu-Balint G, Olariu T, Belu I, Ledeti A, Murariu MS, Stelea L, Ledeti I. Thermal characterization of cholesterol in air vs. nitrogen atmosphere. Rev Chim. 2014;67(1):84–6.

    Google Scholar 

  16. Ledeti I, Simu G, Vlase G, Vlase T, Olariu T, Savoiu G, Suta L, Popoiu C, Fulias A. Ni (II) coordination compound with acetaminophen synthesis and characterization. Rev Chim. 2014;65(5):556–9.

    CAS  Google Scholar 

  17. Abdul Mujeeb VM, Muraleedharan K, Kannan MP, Ganga Devi T. The effect of particle size on the thermal decomposition kinetics of potassium bromate. J Therm Anal Calorim. 2011;108(3):1171–82.

    Article  Google Scholar 

  18. Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tinè MR. Thermal behavior study of pristine and modified halloysite nanotubes: a modern kinetic study. J Therm Anal Calorim. 2015;121(3):1011–9.

    Article  CAS  Google Scholar 

  19. Jiu HCJ, Sugahara T. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119(1):425–33.

    Article  Google Scholar 

  20. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation: part II. Validation and application to crystallization of amorphous Cu4SO4O3. J Therm Anal Calorim. 2016;123(1):1–13.

    Article  Google Scholar 

  21. Matos J, Oliveira JF, Magalhães D, Dubaj T, Cibulková Z, Šimon P. Kinetics of ambuphylline decomposition studied by the incremental isoconversional method. J Therm Anal Calorim. 2016;123(2):1031–6.

    Article  CAS  Google Scholar 

  22. Šimon P, Dubaj T, Cibulková Z. Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurement. J Therm Anal Calorim. 2015;120(1):231–8.

    Article  Google Scholar 

  23. Suta L, Vlase G, Vlase T, Olariu T, Ledeti I, Belu I, Ivan C, Sarau CA, Savoiu-Balint G, Stelea L, Ledeti A. Solid state stability of cholesterol preliminary kinetic analysis. Rev Chim. 2016;67(1):113–5.

    CAS  Google Scholar 

  24. Budrugeac P. Phase transitions of a parchment manufactured from deer leather. J Therm Anal Calorim. 2015;120(1):103–12.

    Article  CAS  Google Scholar 

  25. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  27. Dickinson CF, Heal GR. A review of the ICTAC kinetics project, 2000. Part 2. Non-isothermal results. Thermochim Acta. 2009;494(1–2):15–25.

    Article  CAS  Google Scholar 

  28. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project—the light at the end of the tunnel? Thermochim Acta. 2000;355(1–2):155–63.

    Article  CAS  Google Scholar 

  29. Serra R, Sempere J, Nomen R. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal. 1998;52:933–43.

    Article  CAS  Google Scholar 

  30. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics model. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  31. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  32. Vlase T, Vlase G, Doca N, Ilia G, Fuliaş A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.

    Article  CAS  Google Scholar 

  33. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Dordrecht: Kluwer-Norwel; 2003. p. 91–109.

    Chapter  Google Scholar 

  34. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  35. Ledeţi I, Vlase G, Vlase T, Fuliaş A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121(3):1103–10.

    Article  Google Scholar 

  36. Ledeţi I, Ledeţi A, Vlase G, Vlase T, Matusz P, Bercean V, Suta L-M, Piciu D. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations. J Pharm Biomed Anal. 2016;125:33–40.

    Article  Google Scholar 

  37. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Polym Lett. 1969;7:41–6.

    Article  CAS  Google Scholar 

  38. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  39. Akahira T, Sunose T. Research report, Trans joint convention of four electrical institutes. Chiba Inst Technol (Sci Technol). 1971;16:22–31.

  40. O’Neil MJ, editor. The Merck Index—an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck and Co., Inc.; 2001. p. 979.

    Google Scholar 

  41. https://www.alfa.com/en/catalog/A11311/. Accessed 10 Dec 2016.

  42. http://www.sigmaaldrich.com/catalog/product/usp/1361009?lang=en&region=RO. Accessed 10 Dec 2016.

  43. Ledeti A, Vlase G, Circioban D, Ledeti I, Dehelean C, Stelea L, Vlase T, Caunii A. Comparative stability of Levodopa under thermal stress in both oxidative and inert media. Rev Chim. 2016;69(12):2648–50.

    Google Scholar 

  44. Kura AU, Al Ali SHH, Hussein MZ, Fakurazi S, Arulselvan P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomed. 2013;8:1103–10.

    Article  Google Scholar 

  45. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  46. Prime RB. Differential scanning calorimetry of the epoxy cure reaction. Polym Eng Sci. 1973;13(5):365–71.

    Article  CAS  Google Scholar 

  47. Peyser P, Bascom WD. Kinetics of an anhydride-epoxy polymerization as determined by differential scanning calorimetry. In: Porter RS, Johnson JF editors. Analytical calorimetry. Vol. 3. Boston: Springer; 1974. p. 537–54.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the PN-II-RU-TE-2014-4-0515 to Adriana Ledeti, Gabriela Vlase, Denisa Circioban, and Ionut Ledeti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Ledeti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledeti, A., Olariu, T., Caunii, A. et al. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim 131, 1881–1888 (2018). https://doi.org/10.1007/s10973-017-6671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6671-z

Keywords

Navigation