Skip to main content
Log in

Temperatures and enthalpies of melting of Ln2S3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Samples of Ln2S3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) polymorphs were prepared from Ln2O3 in a CS2 + H2S flow at 1050–1150 °C. DSC melting traces were recorded for Ln2S3 compounds of yttrium lanthanides for the first time. Samples for DSC were prepared by melting and then recrystallizing polycrystalline samples in crucibles of the DSC setup. The melting peak shapes and melting ranges signified the congruent melting of Ln2S3 compounds. The temperatures and enthalpies of melting were determined for the prepared Ln2S3 polymorphs: γ-Gd2S3 (t m = 1794 °C; ΔH = 56.3 kJ mol−1), γ-Tb2S3 (t m = 1753 °C; ΔH = 55.8 kJ mol−1), γ-Dy2S3 (t m = 1698 °C; ΔH = 57 kJ mol−1), δ-Ho2S3 (t m = 1697 °C; ΔH = 47.7 kJ mol−1), δ-Er2S3 (t m = 1662 °C; ΔH = 42.2 kJ mol−1), δ-Tm2S3 (t m = 1665 °C; ΔH = 46.9 kJ mol−1), and ε-Lu2S3 (t m = 1755 °C; ΔH = 53.6 kJ mol−1). The Ln2S3 samples experienced thermal dissociation near their melting temperatures; the relevant mass losses were 0.1–0.24 mass%. After DSC, the samples remained single phases; their concentration changed to Gd2S2.98, Tb2S2.99, Dy2S2.98, Ho2S2.97, Er2S2.97, and Lu2S2.98. A δ-Tm2S3 sample experienced a greater mass loss (0.77 mass%) at 1500–1670 °C to acquire the concentration Tm2S2.91. ε-Yb2S3 decomposed to YbS at temperatures above 1500 °C. The melting temperatures show an inner periodicity, and the enthalpies of melting of Ln2S3 show the tetrad effect as a function of rLn+3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Flahaut J, Laruelle P. Chimie cristalline des combinaisons ternaires soufrees, seleniurees et tellurees formees par les elemens des terres rares. Prog Sci Technol Rare Earths. 1968;3:149–208.

    CAS  Google Scholar 

  2. Andreev OV, Bamburov YG, Monina LN, Razumkova IA, Russeykina AV, Mitroshin OY, Andreev VO. Phase equilibria in the sulfide systems of the 3d-, 4f-elements: monograph. Ekaterinburg: Editorial Publication Department of the UD RAS; 2015.

    Google Scholar 

  3. Kamarzin AA, Mironov KE, Sokolov VV, Malovitsky YuN, Vasileva IG. Growth and properties of lantanum and rare-earth metal sesquisulfide crystals. J Cryst Growth. 1981;. doi:10.1016/0022-0248(81)90351-1.

    Google Scholar 

  4. Sokolov VV, Kamarzin AA, Trushnikova LN, Savelyeva MV. Optical materials containing rare earth Ln2S3 sulfides. J Alloys Compd. 1995;. doi:10.1016/0925-8388(94)07063-6.

    Google Scholar 

  5. Yarembash YI, Yeliseyev AA. Chalcogenides of rare-earth elements. Moscow: Nauka Publ; 1975.

    Google Scholar 

  6. Gschneidner KA, Daane AH. Handbook on the physics and chemistry of rare earths. New York: Elsevier Science Pub. B.; 1988.

    Google Scholar 

  7. Vasilyeva IG, Belyaeva EI. Thermodynamic study of the SmS2–SmS1.5 system. J Solid State Chem. 1999;. doi:10.1006/jssc.1998.7802.

    Google Scholar 

  8. Nikolaev PE, Vasil’eva IG. Vapor pressure determination for solid and liquid La2S3 using boiling points. Inorg Mater. 2008;. doi:10.1134/S0020168508120194.

    Google Scholar 

  9. Okamoto H. Pr-S (Praseodymium-Sulfur). J Phase Equilib. 1991;. doi:10.1007/BF02645088.

    Google Scholar 

  10. Andreev OV, Miodushevscy PV, Serlenga R, Parsukov NN. Phase equilibria in the BaS-Ln2S3 systems. J Phase Equilib Diffus. 2005;. doi:10.1007/s11669-005-0129-x.

    Google Scholar 

  11. Andreev OV, Vysokikh AS, Vaulin VG. Sm2S3–Sm2O3 phase diagram. Russ J Inorg Chem. 2008;. doi:10.1134/S0036023608080299.

    Google Scholar 

  12. Andreev OV, Parshukov NN, Kertman AV. Interaction in the SrS-Ln2S3 (Ln = Tb, Dy, Er) systems: general features of phase formation in the series of the SrS–Ln2S3 systems. Russ J Inorg Chem. 1998;. doi:10.1134/S0036023608030212.

    Google Scholar 

  13. Andreev OV, Levanyuk OV, Sikerina NV. Transformation of phase diagrams in the CaS-Ln2S3 (Ln = Dy-Tm, Y) systems. Russ J Inorg Chem. 2005;50(10):1591–4.

    Google Scholar 

  14. Andreev OV, Levanyuk OV, Parshukov NN. Phase diagram for the CaS-Er2S3 system. Russ J Inorg Chem. 2004;49(11):1763–6.

    Google Scholar 

  15. Andreev OV, Mitroshin OYu, Khritokhin NA, Razumkova IA. Phase equilibria laws in the SrS–Ln2S3 (Ln = Yb–Lu, Y, or Sc) systems. Russ J Inorg Chem. 2008;. doi:10.1134/S0036023608030182.

    Google Scholar 

  16. Demlow AR, Eldred DV, Johnson DA, Westrum EF Jr. Advantages to conversion of lattice heat capacity to Cv in the resolution of excess properties. The Ln2S3’s as an example. J Therm Anal Calorim. 1998;. doi:10.1023/A:1010153110658.

    Google Scholar 

  17. Jordanovska V, Trojko R. Synthesis, identification and thermal decomposition of double sulphates of some lanthanides and Y with ethanolammonium cation. J Therm Anal Calorim. 1998;. doi:10.1023/A:1010178327293.

    Google Scholar 

  18. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ. Thermolysis mechanism of samarium nitrate hexahydrate. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4067-x.

    Google Scholar 

  19. Matraszek A, Radominska E, Szczygiel I. Modified Pechini synthesis of La, Ce, and Pr orthophosphates and characterization of obtained powders. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-014-4067-x.

    Google Scholar 

  20. Elyshev AV, Denisenko YuG, Andreev PO, Polkovnikov AA. Melting enthalpies of the Dy2S3, Y2S3, Lu2S3 compounds. Tyumen State Univ Her. 2014;5:122–32.

    Google Scholar 

  21. Andreev OV, Kharitontsev VB, Polkovnikov AA, Elyshev AV, Andreev PO. Phase diagram of the Y-Y2Se3 system, enthalpies of phase transformations. J Solid State Chem. 2015;. doi:10.1016/j.jssc.2015.06.042.

    Google Scholar 

  22. Ruseikina AV, Andreev OV, Galenko EO, Koltsov SI. Trends in thermodynamic parameters of phase transitions of lanthanide sulfides SrLnCuS3 (Ln = La–Lu). J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-6010-9.

    Google Scholar 

  23. Samsonov GV, Drozdov SM. Sulphides. Moscow: Metallurgy; 1972; 304 p.

  24. Bamburov VG, Andreev OV. Binary and mixed sulfides of alkaline-earth and rare-earth elements. Russ J Inorg Chem. 2002;47(4):598–604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei A. Polkovnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, P.O., Polkovnikov, A.A., Denisenko, Y.G. et al. Temperatures and enthalpies of melting of Ln2S3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds. J Therm Anal Calorim 131, 1545–1551 (2018). https://doi.org/10.1007/s10973-017-6620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6620-x

Keywords

Navigation