Skip to main content
Log in

Specific heat of hexagonal Yb1−xSrxMnO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We have studied influence of the strontium doping in polycrystalline YbMnO3, that is, Yb1−xSrxMnO3 (x = 0.05 and 0.1) multiferroic ceramics, by investigating their magnetic and thermodynamic properties. X-ray powder diffraction measurements on these compounds demonstrated that both samples crystallize in the hexagonal phase with P63cm space group. Antiferromagnetic ordering temperature, as determined by heat capacity measurements, is found to decrease from 86 K (at x = 0.05) to 83 K (at x = 0.1). The compound shows ferromagnetic (FM) ordering at ~4 K due to ordering of the moments of Yb3+ ions in crystallographic site 2a. A Schottky anomaly is observed at around 7 K due to moments of the Yb3+ at the 4b sites as a result of the molecular field present due to Mn3+ ions. Effective molecular fields are estimated to be H mf = 4.6 and 3.0 T for x = 0.05 and x = 0.1, respectively, from the analysis of the observed Schottky anomaly. The magnetic entropy changes (ΔS mag) obtained for samples with x = 0.05 and 0.1 are found to be ~2.24 and ~2.1 J mol−1 K−1, respectively. The relative cooling power is found to be 29 and 28 J mol−1 for a field change of 100 kOe for x = 0.05 and 0.1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694.

    Article  CAS  Google Scholar 

  2. Prellier W, Singh MP, Murugavel P. The single-phase multiferroic oxides: from bulk to thin film. J Phys Condens Matter. 2005;17:R803.

    Article  CAS  Google Scholar 

  3. Khomskii DI. Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater. 2006;306:1.

    Article  CAS  Google Scholar 

  4. Yakel HL, Koehler WC, Bertaut EF, Forrat EF. On the crystal structure of manganese trioxides of the heavy lanthanides and yttrium. Act Crystallogr. 1963;16:957.

    Article  CAS  Google Scholar 

  5. Katsufuji T, Masaki M, Machida A, Moritomo M, Kato K, Nishibori E, Takata M, Sakata M, Ohoyama K, Kitazawa K, Takagi H. Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping. Phys Rev B. 2002;66:134434.

    Article  Google Scholar 

  6. Sekhar MC, Lee S, Choi G, Lee C, Park JG. Doping effects of hexagonal manganites Er1−xYxMnO3 with triangular spin structure. Phys Rev B. 2005;72:014402.

    Article  Google Scholar 

  7. Sattibabu B, Bhatnagar AK, Rayaprol S, Mohan D, Das D, Sundararaman M, Siruguri V. Structural and magnetic properties of Mg doped YbMnO3. Phys B. 2014;448:210.

    Article  CAS  Google Scholar 

  8. Lonkai T, Tomuta DG, Amann U, Ihringer J, Hendrikx RWA, Többens DM, Mydosh JA. Development of the high-temperature phase of hexagonal manganites. Phys Rev B. 2004;69:134108.

    Article  Google Scholar 

  9. Robler S, Harikrishnan S, Robler UK, Elizabeth S, Bhat HL, Steglich F, Wirth S. Interacting magnetic sublattices and ferrimagnetism in Sr-doped DyMnO3. J Phys. 2010;200:012168.

    Google Scholar 

  10. Rajesh T, Thakur T, Bharathi A, Ganesan V. Thermal and magnetic response of divalent Sr doped YMnO3. Mod Phys Lett B. 2012;26:1250201.

    Google Scholar 

  11. Rodriguez-Carvajal J, Hennion M, Moussa F, Moudden AH. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Phys Rev B. 1998;57:R3189–92.

    Article  CAS  Google Scholar 

  12. Zhou J-S, Goodenough JB, Gallardo-Amores JM, Morán E, Alario-Franco MA, Caudillo R. Hexagonal versus perovskite phase of manganite RMnO3, R = (Y, Ho, Er, Tm, Yb, Lu). Phys Rev B. 2006;74:014422.

    Article  Google Scholar 

  13. Fabreges X, Mirebeau I, Bonville P, Petit S, Lebras-Jasmin G, Forget A, Andre G, Pailhes S. Magnetic order in YbMnO3 studied by neutron diffraction and Mössbauer spectroscopy. Phys Rev B. 2008;78:214422.

    Article  Google Scholar 

  14. Fiebiga M, Lottermoser Th, Pisarev RV. Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3. J Appl Phys. 2003;93:8194.

    Article  Google Scholar 

  15. Sugie H, Iwata N, Kohn K. Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J Phys Soc Jpn. 2002;71:1558.

    Article  CAS  Google Scholar 

  16. Midya A, Das SN, Mandal P, Pandya S, Ganesan V. Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMnO3 crystals (R = Dy, Tb, Ho, and Yb). Phys Rev B. 2011;84:235127.

    Article  Google Scholar 

  17. Tomuta DG, Ramakrishnan S, Nieuwenhuys GJ, Mydosh JA. The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3. J Phys Condens Matter. 2001;13:4543.

    Article  CAS  Google Scholar 

  18. Sattibabu B, Bhatnagar AK, Samatham SS, Singh D, Rayaprol S, Das D, Siruguri V, Ganesan V. Thermal properties of multiferroic Mg doped YbMnO3. J Alloy Compd. 2015;644:830–5.

    Article  CAS  Google Scholar 

  19. Zhou HD, Janik JA, Vogt BW, Jo YJ, Balicas L, Case MJ, Wiebe CR, Denyszyn JC, Goodenough JB, Cheng JG. Specific heat of geometrically frustrated and multiferroic RMn1−x GaxO3 (R = Ho, Y). Phys Rev B. 2011;84:235127.

    Article  Google Scholar 

  20. Midya A, Mandal P, Das S, Banerjee S, Sharath Chandra LS, Ganesan V, Roy Barman S. Magnetocaloric effect in HoMnO3 crystal. Appl Phys Lett. 2010;96:142514.

    Article  Google Scholar 

  21. Kumar NP, Reddy PV. Magnetocaloric effect in RMnO3 (R = Gd, Tb and Dy) multiferroics. Mater Lett. 2014;122:292–5.

    Article  CAS  Google Scholar 

  22. Kumar NP, Reddy PV. Investigation of magnetocaloric effect in Dy doped TbMnO3. Mater Lett. 2014;132:82–5.

    Article  Google Scholar 

  23. Abramov N, Chichkov V, Lofland SE, Mukovskii Ya. Low-temperature properties of Ca-doped YbMnO3 multiferroic single crystals. J Appl Phys. 2011;109:07D912.

    Article  Google Scholar 

  24. Abramov N, Lofland S, Mukovskii Ya. Study of the low-temperature properties of multiferroic YbMnO3 and YbMn0.7Ga0.3O3 single crystals. Phys Status Solidi B. 2012;1–3:48318.

    Google Scholar 

  25. Cheng J-G, Sui Y, Qian ZN, Liu ZG, Miao JP, Huang XQ, Lu Z, Li Y, Wang XJ, Su WH. Schottky-like anomaly in the low-temperature specific heat of single-crystal NdMnO3. Solid State Commun. 2005;134:381.

    Article  CAS  Google Scholar 

  26. Sattibabu B, Bhatnagar AK, Singh D, Rayaprol S, Das D, Ganesan V. Specific heat and magnetocaloric studies of hexagonal Yb1−xErxMnO3. Mater Lett. 2015;161:419–22.

    Article  Google Scholar 

  27. Franco V, Conde A. Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials. Int. J. Refrig. 2010;33:465–73.

    Article  CAS  Google Scholar 

  28. M’nassri R. Field dependence of magnetocaloric properties in La0.6Pr0.4Fe10.7Co0.8Si1.5. J. Supercond. Nov Magn. 2014;27:1787–94.

    Article  Google Scholar 

  29. Mnassri R, Cheikhrouhou A. Evolution of magnetocaloric behavior in oxygen deficient La2/3Ba1/3MnO3−δ manganites. J Supercond Nov Magn. 2014;27:1463–8.

    Article  CAS  Google Scholar 

  30. Dong QY, Zhang HW, Sun JR, Shen BG, Franco V. A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J Appl Phys. 2008;104:116101.

    Article  Google Scholar 

Download references

Acknowledgement

BSB acknowledges UGC-DAE CSR, Mumbai, for the financial support in the form of project fellowship (Project # CRS-M-199). AKB is thankful to the National Academy of Sciences (India) for their support. We also thank the Director V. Ganesan of UGC-DAE CSR, Indore, India, for providing facilities for heat capacity measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhumireddi Sattibabu or A. K. Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattibabu, B., Bhatnagar, A.K. Specific heat of hexagonal Yb1−xSrxMnO3 . J Therm Anal Calorim 130, 2015–2023 (2017). https://doi.org/10.1007/s10973-017-6544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6544-5

Keywords

Navigation