Skip to main content
Log in

Numerical investigation of the heat pump system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of the presented research is to develop an overall mathematical model, which will allow for a more precise simulation of the operation of a water-to-water heat pump system, having in mind its thermodynamics, fluid mechanics and heat transfer processes. The simulation allows the prediction of the parameters of the state at each and every point of the cycle, i.e., of the heat pump. The developed model is deterministic, stationary and with distributed parameters. The shell and tube heat exchangers’ mathematical models are described by coupled differential equations, while the models of the compressor and the expansion valve are described using algebraic equations with lumped parameters. The thermodynamics, fluid mechanics and heat transfer processes are examined as functions of changing mass flow of the cooled water \(\dot{m}_{\text{cw}} = 0.28, 0.42, 0.55\,{\text{and }}\,0.69 \left[ {{\text{kg}} {\text{s}}^{ - 1} } \right]\), with a referent mass flow of the refrigerant \(\dot{m}_{\text{ref}} = 0.019 \left[ {{\text{kg s}}^{ - 1} } \right]\) and the heated water \(\dot{m}_{\text{hw}} = 0.28 \left[ {{\text{kg s}}^{ - 1} } \right]\). The used refrigerant is R134a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area (m2)

d :

Diameter (m)

de:

Hydraulic diameter (m)

x :

Vapor quality (-)

U :

Perimeter (m)

G :

Mass flux (kg s−1m−2)

\(\dot{m}\) :

Mass flow rate (kg s−1)

T :

Temperature (K)

\({\bar{\text{T}}}\) :

Average fluid temperature (K)

f :

Friction factor (-)

p :

Pressure (Pa)

R :

Fluid resistance

\(\dot{q}\) :

Heat flux ( m−2)

w :

Velocity (m s−1)

h :

Enthalpy (J kg−1)

z :

Tube length (m)

v :

Specific volume (m3 kg−1)

vh :

Spec. volume of function enthalpy (m3 kg−1)

vp :

Spec. volume of function pressure (m3 kg−1)

Re:

Reynolds number (-)

Pr:

Prandtl number (-)

Xtt :

Martinelli parameter (-)

Co:

Convection number (-)

C :

Characteristic constant of the TEV valve (-)

W :

Compressor power (W)

α :

Heat transfer coefficient (W m−2 K−1)

\(\lambda\) :

Thermal conductivity (W m−1 K−1)

ρ :

Density (kg m−3)

η :

Efficiency (-)

ref:

Refrigerant

c :

Cold

h :

Hot

i :

In

o :

Out

w :

Water

liq:

Liquid phase

vap:

Vapor phase

sh:

Superheated

nb:

Nucleated boiling

t :

Tube wall

eva:

Evaporation

con:

Condensation

comp:

Compressor

References

  1. Liu Y, Groll EA, Yazawa K, Kurtulus O. Theoretical analysis of energy-saving performance and economics of CO2 and NH3 heat pumps with simultaneous cooling and heating applications in food processing. Int J Refrig. 2016;65:129–41.

    Article  CAS  Google Scholar 

  2. Saravanakumar R, Selladurai V. Energy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. J Therm Anal Calorim. 2014;115(1):933–40.

    Article  CAS  Google Scholar 

  3. Rafati M, Kassai M, Ge G, Simonson CJ. Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation. Appl Energy. 2015;151:32–40.

    Article  Google Scholar 

  4. Bagarella G, Lazzarin R, Noro M. Sizing strategy of on-off and modulating heat pump systems based on annual energy analysis. Int J Refrig. 2016;65:183–93.

    Article  Google Scholar 

  5. Kővári A. Effect of leakage in electrohydraulic servo systems based on complex nonlinear mathematical model and experimental results. Acta Polytech Hung. 2015;12(3):129–46.

    Google Scholar 

  6. MacArthur JW, Grald EW. Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. Int J Refrig. 1989;12:29–41.

    Article  CAS  Google Scholar 

  7. Stefanuk NBM, Aplevich JD, Renksizbulut M. Modeling and simulation of a superheat-controlled water-to-water heat pump. ASHRAE Trans. 1992;98(2):172–84.

    Google Scholar 

  8. Bourdouxhe JPH, Grodent M, Lebrun JJ, Saavedra C, Silva KL. A toolkit for primary HVAC system energy calculation—part 2: reciprocating chiller models. ASHRAE Trans. 1994;100(2):774–86.

    Google Scholar 

  9. Fu L, Ding G, Zhang C. Dynamic simulation of air-to-water dual-mode heat pump with screw compressor. Appl Therm Eng. 2003;23:1629–45.

    Article  CAS  Google Scholar 

  10. Zhao L, Zaheeruddin M. Dynamic simulation and analysis of a water chiller refrigeration system. Appl Therm Eng. 2005;25:2258–71.

    Article  Google Scholar 

  11. Techarungpaisan P, Theerakulpisut S, Priprem S. Modeling of a split type air conditioner with integrated water heater. Energy Convers Manag. 2007;48:1222–37.

    Article  CAS  Google Scholar 

  12. Belman JM, Navarro-Esbri J, Ginestar D. MilianV. Steady-state model of a variable speed vapor compression system using R134a as working fluid. Int J Energy Res. 2010;34:933–45.

    Article  CAS  Google Scholar 

  13. Zhenjun X, Huaizhi W, Meiling W. Energy performance and consumption for biogas heat pump air conditioner. Energy. 2010;35:5497–502.

    Article  Google Scholar 

  14. Kinab E, Marchio D, Riviere P, Zoughaib A. Reversible heat pump model for seasonal performance optimization. Energy Build. 2010;12:2269–80.

    Article  Google Scholar 

  15. Guo JJ, Wu JY, Wang RZ, Li S. Experimental research and operation optimization of an air-source heat pump water heater. Appl Energy. 2011;88:4128–38.

    Article  Google Scholar 

  16. Choi JW, Lee G, Kim MS. Numerical study on the steady state and transient performance of a multi-type heat pump system. Int J Refrig. 2011;34:429–43.

    Article  Google Scholar 

  17. Corberan JM, Galvan IM, Ballester SM, Macia JG, Pastor RR. Influence of the source and sink temperatures on the optimal refrigerant charge of a water-to-water heat pump. Int J Refrig. 2011;34:881–92.

    Article  CAS  Google Scholar 

  18. Ibrahim O, Fardoun F, Younes R, Gualous HL. Air source heat pump water heater: dynamic modeling, optimal energy management and mini-tubes condensers. Energy. 2014;64:1102–16.

    Article  Google Scholar 

  19. Sheng Y, Zhang Y, Zhang G. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system. Energy. 2015;83:583–96.

    Article  Google Scholar 

  20. Santa R, Garbai L, Fürstner I. Optimization of heat pump system. Energy. 2015;89:45–54.

    Article  CAS  Google Scholar 

  21. Szlivka F. Different mathematical solutions on gas oscillation. Acta Polytech Hung. 2014;11(02):101–15.

    Google Scholar 

  22. Santa R. The analysis of two-phase condensation heat transfer models based on the comparison of boundary condition. Acta Polytech Hung. 2012;9(6):167–80.

    Google Scholar 

  23. Santa R, Garbai L. Measurement testing of heat transfer coefficients in the evaporator and condenser of heat pumps. J Therm Anal Calorim. 2015;119:2099–106.

    Article  CAS  Google Scholar 

  24. Ali ShB, Hameed BM, Alasdair NC, Anthony JG. Measuring the average volumetric heat transfer coefficient of a liquid–liquid–vapour direct contact heat exchanger. Appl Therm Eng. 2016;103:47–55.

    Article  Google Scholar 

  25. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. PublEng. 1930;2:443.

    Google Scholar 

  26. Santa R. Simulation and optimisation of compressor driven heat pumps for building services. Hungary: Department of Building Service Engineering and Process Engineering. Ph.D. Budapest University of Technology and Economics Faculty of Mechanical Engineering; 2014.

    Google Scholar 

  27. Alexander DJ, Libretto SE. An overview of the toxicology of HFA-134a (1,1,1,2-tetrafluoroethane). Hum Exp Toxicol. 1995;14(9):715–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sánta Róbert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Róbert, S., Garbai, L. & Fürstner, I. Numerical investigation of the heat pump system. J Therm Anal Calorim 130, 1133–1144 (2017). https://doi.org/10.1007/s10973-017-6489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6489-8

Keywords

Navigation